|
ОглавлениеОрганизационно-экономическое моделирование: теория принятия решений. Предисловие Часть I. Основы теории принятия решений. Глава 1. Введение в теорию принятия решений Глава 2. Простые методы принятия решений Глава 3. Основы теории управления Глава 5. Регрессия, корреляция и прогнозирование Глава 6. Анализ динамики цен и использование индексов инфляции при принятии управленческих решений Часть III. Экспертные технологии принятия решений. Глава 7. Процедуры экспертных оценок Глава 8. Организация работы экспертной комиссии Глава 9. Теория измерений и экспертные оценки Глава 10. Методы средних рангов Глава 11. Математические методы анализа экспертных оценок Глава 12. Бинарные данные и парные сравнения Глава 13. Рейтинги (обобщенные показатели) Глава 14. Примеры разработки управленческих решений на основе экспертных оценок Часть IV. Моделирование в теории принятия решений. Глава 15. Основы моделирования Глава 16. Экономико-математические модели и принятие решений Глава 17. Принятие решений на основе моделей обеспечения качества Для бесплатного чтения доступна только часть главы! Для чтения полной версии необходимо приобрести книгуЧасть II. Математические методы разработки и принятия решенийГлава 4. Методы оптимизации при принятии решений4.1. Линейное программированиеМенеджер может использовать при принятии решения различные компьютерные и математические средства. В памяти компьютеров хранят много информации, организованной с помощью баз данных и других программных продуктов, позволяющих оперативно ею пользоваться. Экономико-математические и эконометрические модели позволяют просчитывать последствия тех или иных решений, прогнозировать развитие событий. Методы экспертных оценок, о которых пойдет речь далее, также весьма математизированы и используют компьютеры. Наиболее часто используются оптимизационные модели принятия решений. Их общий вид таков: где Х — параметр, который менеджер может выбирать (управляющий параметр). Он может иметь различную природу — число, вектор, множество и т.п. Цель менеджера — максимизировать целевую функцию F(X), выбрав соответствующий Х. При этом он должен учитывать ограничения X ∈ A на возможные значения управляющего параметра Х — он должен лежать в множестве А. Рассмотрим примеры оптимизационных задач менеджмента. Среди оптимизационных задач менеджмента наиболее известны задачи линейного программирования, в которых максимизируемая функция F(X) линейная, а ограничения А задаются линейными неравенствами. Производственная задача. Цех может производить стулья и столы. На производство стула идет 5 единиц материала, на производство стола — 20 единиц (футов красного дерева). Стул требует 10 человеко-часов, стол — 15. Имеется 400 единиц материала и 450 человеко-часов. Прибыль при производстве стула — 45 дол. США, при производстве стола — 80 дол. Сколько надо сделать стульев и столов, чтобы получить максимальную прибыль? Обозначим Х1 число изготовленных стульев, Х2 — число столов. Задача оптимизации имеет вид: В первой строке выписана целевая функция — прибыль при выпуске Х1 стульев и Х2 столов. Ее требуется максимизировать, выбирая оптимальные значения переменных Х1 и Х2. При этом должны быть выполнены ограничения по материалу (вторая строчка) — истрачено не более 400 футов красного дерева. А также и ограничения по труду (третья строчка) — затрачено не более 450 ч. Кроме того, нельзя забывать, что число столов и число стульев неотрицательны. Если Х1 = 0, то это значит, что стулья не выпускаются. Если же хоть один стул сделан, то Х1 положительно. Но невозможно представить себе отрицательный выпуск — Х1 не может быть отрицательным с экономической точки зрения, хотя с математической точки зрения такого ограничения усмотреть нельзя. В четвертой и пятой строчках задачи и констатируется, что переменные неотрицательны. Условия производственной задачи можно изобразить на координатной плоскости. Будем по оси абсцисс откладывать значения Х1, а по оси ординат — значения Х2. Тогда ограничения по материалу и последние две строчки оптимизационной задачи выделяют возможные значения (Х1, Х2) объемов выпуска в виде треугольника (рис. 4.1). Рис. 4.1. Ограничения по материалу Таким образом, ограничения по материалу изображаются в виде выпуклого многоугольника, в данном случае — треугольника. Этот треугольник получается путем отсечения от первого квадранта примыкающей к началу координат зоны. Отсечение проводится прямой, соответствующей второй строке исходной задачи, с заменой неравенства на равенство. Прямая пересекает ось Х1, соответствующую стульям, в точке (80,0). Это означает, что если весь материал пустить на изготовление стульев, то будет изготовлено 80 стульев. Та же прямая пересекает ось Х2, соответствующую столам, в точке (0,20). Это означает, что если весь материал пустить на изготовление столов, то будет изготовлено 20 столов. Для всех точек внутри треугольника выполнено неравенство, что означает — материал останется. Аналогичным образом можно изобразить и ограничения по труду (рис. 4.2). Рис. 4.2. Ограничения по труду Ограничения по труду, как и ограничения по материалу, изображаются в виде треугольника, который получается аналогично — путем отсечения от первого квадранта примыкающей к началу координат зоны. Отсечение проводится прямой, соответствующей третьей строке исходной задачи, с заменой неравенства на равенство. Прямая пересекает ось Х1, соответствующую стульям, в точке (45,0). Это означает, что если все трудовые ресурсы пустить на изготовление стульев, то будет сделано 45 стульев. Та же прямая пересекает ось Х2, соответствующую столам, в точке (0,30). Это означает, что если всех рабочих поставить на изготовление столов, то будет сделано 30 столов. Для всех точек внутри треугольника выполнено неравенство, что означает — часть рабочих будет простаивать. Мы видим, что очевидного решения нет — для изготовления 80 стульев есть материал, но не хватает рабочих рук, а для производства 30 столов есть рабочая сила, но нет материала, Значит, надо изготавливать и то и другое. Но в каком соотношении? Чтобы ответить на этот вопрос, надо «совместить» рис. 4.1 и рис. 4.2, получив область возможных решений, а затем проследить, какие значения принимает целевая функция на этом множестве (рис. 4.3). Рис. 4.3. Основная идея линейного программирования Таким образом, множество возможных значений объемов выпуска стульев и столов (Х1, Х2), или, в других терминах, множество А, задающее ограничения на параметр управления в общей оптимизационной задаче, представляет собой пересечение двух треугольников, т.е. выпуклый четырехугольник, показанный на рис. 4.3. Три его вершины очевидны — это (0,0), (45,0) и (0,20). Четвертая — это пересечение двух прямых — границ треугольников на рис. 4.1 и рис. 4.2, т.е. решение системы уравнений 5Х1 + 20Х2 = 400; 10Х1 + 15Х2 = 450. Из первого уравнения: 5Х1 = 400 - 20 Х2, Х1 = 80 - 4Х2. Подставляем значение X1, выраженное через X2, во второе уравнение: 10(80 - 4Х2) + 15Х2 = 800 - 40Х2 + 15Х2 = 800 - 25Х2 = 450, следовательно, 25Х2 = 350, Х2 = 14, откуда Х1 = 80 - 4 х 14 = 80 - 56 = 24. Итак, четвертая вершина четырехугольника — это (24, 14). Надо найти максимум линейной функции на выпуклом многоугольнике. (В общем случае линейного программирования — максимум линейной функции на выпуклом многограннике, лежащем в конечномерном линейном пространстве.) Основная идея линейного программирования состоит в том, что максимум достигается в вершинах многоугольника. В общем случае — в одной вершине, и это — единственная точка максимума. В частном — в двух, и тогда отрезок, их соединяющий, тоже состоит из точек максимума. Целевая функция 45Х1 + 80Х2 принимает минимальное значение, равное 0, в вершине (0,0). При увеличении аргументов эта функция увеличивается. В вершине (24, 14) она принимает значение 2200. При этом прямая 45Х1 + 80Х2 = 2200 проходит между прямыми ограничений 5Х1 + 20Х2 = 400 и 10Х1 + 15Х2 = 450, пересекающимися в той же точке. Отсюда, как и из непосредственной проверки двух оставшихся вершин, вытекает, что максимум целевой функции, равный 2200, достигается в вершине (24, 14). Таким образом, оптимальный выпуск таков: 24 стула и 14 столов. При этом используется весь материал и все трудовые ресурсы, а прибыль равна 2200 дол. Двойственная задача. Каждой задаче линейного программирования соответствует так называемая двойственная задача. В ней по сравнению с исходной задачей строки переходят в столбцы, неравенства меняют знак, вместо максимума ищется минимум (или, наоборот, вместо минимума — максимум). Задача, двойственная к двойственной — эта сама исходная задача. Сравним исходную задачу (слева) и двойственную к ней (справа): Почему двойственная задача столь важна? Можно доказать, что оптимальные значения целевых функций в исходной и двойственной задачах совпадают (т.е. максимум в исходной задаче совпадает с минимумом в двойственной). При этом оптимальные значения W1 и W2 показывают стоимость материала и труда соответственно, если их оценивать по вкладу в целевую функцию. Чтобы не путать с рыночными ценами этих факторов производства, W1 и W2 называют «объективно обусловленными оценками» сырья и рабочей силы. Линейное программирование как научно-практическая дисциплина. Из всех задач оптимизации задачи линейного программирования выделяются тем, что в них имеются ограничения — системы линейных неравенств или равенств. Ограничения задают выпуклые линейные многогранники в конечном линейном пространстве. Целевые функции также линейны. Впервые такие задачи решались советским математиком Л.В. Канторовичем (1912 — 1986) в 1930-х гг. как задачи производственного менеджмента с целью оптимизации организации производства и производственных процессов, например процессов загрузки станков и раскройки листов материалов. После Второй мировой войны аналогичными задачами занялись в США. В 1975 г. Т. Купманс (1910—1985, родился в Нидерландах, работал в основном в США) и академик АН СССР Л.В. Канторович награждены Нобелевскими премиями по экономике. Рассмотрим несколько типовых задач линейного программирования. Внимание! Авторские права на книгу "Организационно-экономическое моделирование: теория принятия решений" (Орлов А.И.) охраняются законодательством! |