|
ОглавлениеГлава 1. Теории происхождения нефти Глава 2. Физико-химические свойства нефти Глава 3. Элементный и групповой состав нефти Глава 4. Гетероатомные соединения нефти Глава 5. Надмолекулярная структура нефти Глава 6. Водонефтяные эмульсии Глава 7. Фазовые равновесия в системе «Нефть – газ» Глава 8. Фракционный состав нефти Глава 9. Методы выделения компонентов Глава 12. Термические превращения углеводородов нефти Глава 13. Термокаталические превращения Глава 14. Гидрогенизационные процессы в нефтепереработке Глава 15. Состав и эксплуатационные свойства основных видов топлив и масел Для бесплатного чтения доступна только часть главы! Для чтения полной версии необходимо приобрести книгуГлава 12. ТЕРМИЧЕСКИЕ ПРЕВРАЩЕНИЯ УГЛЕВОДОРОДОВ НЕФТИ12.1. Термодинамика процессаХимическая термодинамика дает возможность определить вероятность протекания реакции, максимальную степень превращения и равновесную концентрацию продуктов. Термодинамическая вероятность протекания химической реакции определяется величиной изменения в процессе свободной энергии Гиббса ΔGT. Зная величину, можно рассчитать константу равновесия реакции по уравнению lg KP = –ΔGT0 / 4,575 T. Значение и знак при ΔGT являются критерием принципиальной осуществимости процесса, что вытекает из следующих рассуждений. Константа равновесия реакции определяется отношением KP = k1 / k2, где k1 – константа скорости прямой реакции; k2 – константа скорости обратной реакции. Чтобы реакция протекала в прямом направлении (слева направо), скорость прямой реакции должна быть выше скорости обратной реакции, т.е. k1 > k2. В таком случае KP будет больше 1, a lg KP > 0. Согласно уравнению, lg KP > 0 только при условии ΔGT0 < 0. Таким образом, необходимым условием протекания реакции в прямом направлении является отрицательное значение энергии Гиббса. Чем больше числовое отрицательное значение ΔGT0, тем выше скорость прямой реакции. Изменение свободной энергии образования некоторых углеводородов в зависимости от температуры приведено на рис. 11. Из рис. 11 следует, что термодинамическая стабильность всех углеводородов, за исключением ацетилена, понижается с повышением температуры. В одном гомологическом ряду стабильность падает с повышением молекулярной массы. При высокой температуре алкены, алкадиены и арены значительно более устойчивы, чем алканы и циклоалканы. Отсюда можно сделать вывод, что для переработки алканов в алкены достаточно простого нагревания до высокой температуры. Однако алкены при любой температуре неустойчивы к вторичным реакциям, например к полимеризации. Кроме того, даже при относительно низкой температуре термодинамически возможен распад углеводородов на элементы. Вследствие этого общее термодинамическое равновесие системы со временем сдвигается в сторону глубоких превращений (с образованием водорода, метана, смолы, кокса). При высокотемпературных процессах (например, пиролизе) время, следовательно, становится одним из основных параметров. Кинетические закономерности приобретают главенствующую роль над термодинамическими. Если конечной целью процесса является получение максимального выхода алкена, то реакцию надо остановить в момент наибольшей концентрации алкенов и не дать ей приблизиться к конечному термодинамическому равновесию. Рис. 11. Зависимость свободной энергии образования углеводородов от температуры 12.2. Кинетика и механизм процессаТермические реакции углеводородов могут протекать как молекулярные, так и радикальные цепные или нецепные. Ионные реакции в условиях термических процессов не протекают, так как гетеролитический распад С–С-связи требует энергии 1206 кДж/моль, значительно большей, чем гомолитический, – 360 кДж/моль. Внимание! Авторские права на книгу "Химия нефти и газа. Учебно-методический комплекс" (Калинина Т.А.) охраняются законодательством! |