Наука Лихин А.Ф. Концепции современного естествознания

Концепции современного естествознания

Возрастное ограничение: 12+
Жанр: Наука
Издательство: Проспект
Дата размещения: 24.05.2013
ISBN: 9785392022557
Язык:
Объем текста: 395 стр.
Формат:
epub

Оглавление

Введение

Раздел 1. Наука как сфера человеческой деятельности и ее особенности. Глава 1.1. Наука и ее роль в обществе

Глава 1.2. Классификация наук

Глава 1.3. Основные исторические этапы развития естествознания

Раздел 2. Концепции классической науки. Глава 2.1. Механическая физическая картина мира

Глава 2.2. Электромагнитная картина мира

Глава 2.3. Классические концепции энергии и времени

Раздел 3. Концепции неклассической науки. Глава 3.1. Теория относительности

Глава 3.2. Современное естествознание о физической реальности и силах взаимодействия в природе

Глава 3.3. Современные концепции происхождения Вселенной

Раздел 4. Проблемы и концепции постнеклассической науки. Глава 4.1. Современная астрономия об объектах вселенной

Глава 4.2. Биосфера, климат и строение Земли

Глава 4.3. Живые системы и их особенности

Глава 4.4. Основные концепции происхождения жизни и человека

Глава 4.5. Человек, его будущее в свете достижений современного естествознания



Для бесплатного чтения доступна только часть главы! Для чтения полной версии необходимо приобрести книгу



Раздел 3. КОНЦЕПЦИИ НЕКЛАССИЧЕСКОЙ НАУКИ


Глава 3.1. ТЕОРИЯ ОТНОСИТЕЛЬНОСТИ


Основные понятия: время и пространство, масса и энергия, релятивистская механика, неевклидова геометрия, неклассическая наука


3.1.1. Альберт Эйнштейн


Альберт Эйнштейн — физик-теоретик и крупный общественный деятель. О нем часто говорят, как об ученом, «обвенчанном» с Вселенной, пытавшемся разгадать информацию «тайных послов» Вселенной. К «тайным послам» Вселенной относятся так называемые мировые константы, значения которых определяет физическое состояние мира, в котором мы живем. К этим константам относятся: постоянная Планка (квант-энергии), скорость света, заряд электрона, масса протона, гравитационная постоянная и некоторые другие. А. Эйнштейн признан выдающимся ученым XX столетия. Он родился в Швейцарии, в небогатой еврейской семье, которая жила вначале в Швейцарии, затем в Германии. В 1933 г. (в Германии пришли к власти нацисты) А. Эйнштейн эмигрировал в США, где и прожил до конца своей жизни. В 1921 г. ему была присуждена Нобелевская премия за работы в области теоретической физики и объяснение физической природы фотоэлектрического эффекта. С 1926 г. он был почетным членом Академии наук СССР.


А. Эйнштейн принадлежал к числу выдающихся личностей, которые интересны не только своими результатами, но и тем, как они мыслили и над какими проблемами работали. Проблемы, которые он исследовал, интересовали многих ученых, например французского математика А. Пуанкаре (1854—1912) и австрийского физика Э. Маха (1833—1916). Научному сообществу А. Эйнштейн стал известен своими первыми опубликованными тремя работами. В первой речь шла о развитии статистических методов при изучении движения броуновских частиц, во второй — о необходимости введения понятия системы отсчета для уточнения содержания понятий времени и пространства, в третьей — об анализе гипотезы М. Планка о квантах энергии, т. е. испускании и поглощении энергии порциями, квантами. Анализируя эту гипотезу, А. Эйнштейн пришел к выводу о необходимости радикального изменения существовавших в то время представлений об энергии и формах ее превращения. Следствием этого анализа явилось утверждение А. Эйнштейна о том, что свет испускается и поглощается как некая локализованная частица, которая перемещается от одной точки к другой как единое целое. Сходную идею высказывал еще И. Ньютон в своей корпускулярной теории света. Многие ученые придерживались концепции света как колебание эфира, заполняющего все космическое пространство. Всемирную известность Эйнштейну принесла его теория относительности. Однажды великий Чарльз Чаплин сказал Эйнштейну: «Мне аплодируют, потому что все понимают, что я играю. Вам — за то, что Вас не понимают».


В теории относительности выделяют специальную теорию относительности (СТО) и общую теорию относительности (ОТО). СТО была создана в 1905 г. Над созданием ОТО Эйнштейн работал более десяти лет с 1905 по 1916 г. К двадцатым годам прошлого века он был общепризнанным лидером в теоретической физике. С появлением в 1926 г. квантовой механики Эйнштейн вступил в острую дискуссию по проблеме получения объективной информации об объектах микромира. А. Эйнштейну не удалось доказать неполноту и противоречивость квантовой механики, но его физические идеи оказали большое влияние на развитие этой теории. Например, теория лазеров (термин «лазер» образован из первых букв английского названия «усиление света в результате вынужденного излучения») основывается на принципах индуцированного фотонного излучения, сформулированных в виде гипотезы А. Эйнштейном в 1915 г. В расцвете своих творческих сил А. Эйнштейн добровольно отказался от роли лидера в области теоретической физики. Вторая половина его научного творчества была связана с созданием теории, раскрывающей единство физической природы всех сил физического взаимодействия в природе (гравитация, электромагнитные, сильные и слабые). Эта теория получила название теории единого физического поля. По существу, теория относительности была необходимым этапом развитии теории единого физического поля, над которой он работал в последние годы своей жизни.


3.1.2. Опыт Морли — Майкельсона


Когда А. Эйнштейну было всего два года, американский исследователь А. Майкельсон (офицер ВМФ США, затем профессор прикладных наук) провел эксперимент, идея которого была предложена в 1875 г. Д. К. Максвеллом. Идея этого эксперимента состояла в измерении абсолютной скорости Земли относительно эфира. Если эфир существует, как полагали некоторые ученые, то Земля в своем движении в эфире, должна ощущать пусть хоть и мало, но все же заметное на себе его влияние. Для этого нужно было сделать установку, которая бы посылала луч света по направлению движения Земли на орбите вокруг Солнца, затем луч света отражался бы от установленного зеркала на конце его пути в установке и бежал бы против направления движения Земли по орбите вокруг Солнца. А. Майкельсон и химик Э. Морли внесли совместно конструктивные изменения в этот эксперимент, поэтому эксперимент стали называть экспериментом Морли — Майкельсона.


Результат эксперимента оказался необычным. Средняя скорость движения Земли на орбите приблизительно 30 км/с, скорость света — 300 тыс. км/с. Длина плеча установки, вдоль которой двигался свет, постоянна. Исследователи полагали, что время T1 = l/c + v, где l — длина плеча установки, с — скорость света, v — средняя скорость Земли на орбите, не должно быть равно времени T2 = l/c — v. В обычных условиях, например, лодка с одной и той же скоростью движения проходит одно и то же расстояние против и по течению реки за разное время: T1 = l/v1 + v2 не равно Т2 = l/v1 — v2, где v1 — скорость течения реки, v2 — скорость лодки. Результат эксперимента вызвал оживленную дискуссию, поскольку из него следовало: а) или скорость света не зависит от движения его источника; б) или эфира действительно нет; в) или Земля покоится в пространстве, т. е. является абсолютной системой отсчета в мире, во что уже в то время было трудно поверить.


3.1.3. Преобразования Лоренца


В 1892 г. два физика независимо друг от друга (ирландский физик Фитцджеральд и голландский физик Лоренц) предложили математическое решение, которое сохраняло идею существования эфира и примеряло результаты эксперимента Морли — Майкельсона с принятыми в классической механике преобразованиями координат Галилея.


Голландский физик Х. А. Лоренц (1853—1928), лауреат Нобелевской премии (1902), создатель классической электронной теории, предложил математическое разрешение казуса эксперимента Морли — Майкельсона, которое получило название преобразование Лоренца. Это преобразование координат движущего или покоящегося материального тела отличается от преобразований Галилея следующим образом.


1. Согласно преобразованию X. Лоренца длина движущегося тела в направлении его движения сокращается или остается постоянной в зависимости от скорости движения тела по формуле



где l — длина тела, v — скорость движения тела, с — скорость света. В зависимости от разницы величины скорости движения тела от величины скорости света эта формула показывает заметное или незаметное сокращение длины тела. Например, ракета длиной в 50 м при скорости 100 км/с сокращает свою длину по направлению своего движения всего лишь на 0,003 мм. Из предложенного Лоренцем коэффициента сокращения длины следовало, что в установке Морли — Майкельсона длина плеча, движущегося вдоль своей длины, должна была сокращаться. Этим он объяснял тот факт, что Морли и Майкельсон не заметили разницы во времени движения света в противоположных направлениях.




Концепции современного естествознания

В учебнике рассмотрены основные концепции современного естествознания, учебный материал которого соответствует государственному образовательному стандарту (программе) по учебной дисциплине "Концепции современного естествознания" для студентов юридических специальностей. Предназначен для студентов юридических вузов. <br><br> <h3><a href="https://litgid.com/read/kontseptsii_sovremennogo_estestvoznaniya2/page-1.php">Читать фрагмент...</a></h3>

209
Наука Лихин А.Ф. Концепции современного естествознания

Наука Лихин А.Ф. Концепции современного естествознания

Наука Лихин А.Ф. Концепции современного естествознания

В учебнике рассмотрены основные концепции современного естествознания, учебный материал которого соответствует государственному образовательному стандарту (программе) по учебной дисциплине "Концепции современного естествознания" для студентов юридических специальностей. Предназначен для студентов юридических вузов. <br><br> <h3><a href="https://litgid.com/read/kontseptsii_sovremennogo_estestvoznaniya2/page-1.php">Читать фрагмент...</a></h3>

Внимание! Авторские права на книгу "Концепции современного естествознания" (Лихин А.Ф.) охраняются законодательством!