Наука Белопухов С.Л., Старых С.Э. Физическая и коллоидная химия. Основные термины и определения. Учебное пособие

Физическая и коллоидная химия. Основные термины и определения. Учебное пособие

Возрастное ограничение: 0+
Жанр: Наука
Издательство: Проспект
Дата размещения: 13.09.2015
ISBN: 9785392199785
Язык:
Объем текста: 238 стр.
Формат:
epub

Оглавление

Химический словарь

Приложение



Для бесплатного чтения доступна только часть главы! Для чтения полной версии необходимо приобрести книгу



ХИМИЧЕСКИЙ СЛОВАРЬ


Абиогенез. 1) Образование вне организма свойственных живой природе органических веществ. 2) Возникновение жизни из неживого материала. 3) Гипотеза происхождения жизни путем постепенного усложнения веществ неорганической природы и возникновения биополимеров (нуклеиновых кислот, белков и др.), которым присущи основные свойства живого, и прежде всего способность к обмену веществ как непрерывному условию их существования, т. е. жизнь возникла естественным путем из неживой материи. Для средневековья характерны взгляды, допускавшие возникновение живого из неживого. Например, считалось, что мухи зарождаются из гнилого мяса, мыши — из грязи, а рыбы — из ила. Опыты Ф. Реди, а позднее Л. Пастера доказали невозможность самопроизвольного зарождения жизни в условиях Земли в настоящее время. Однако в экспериментах С. Миллера (США), воспроизводивших условия, существовавшие на нашей планете 4–4,5 млрд лет назад, удалось получить из смеси несложных веществ (СН4, NH3, H2 и Н2О) вещества, характерные для живых организмов, в частности аминокислоты и жирные кислоты. Согласно гипотезе А. И. Опарина предбиологический период накопления необходимых для жизни молекул протекал многие миллионы лет и закончился возникновением простейших одноклеточных организмов, эволюция которых в конце концов привела к разнообразию современной живой природы. Абиогенезу противопоставляется биогенез. Образование веществ, характерных для живых организмов, вне живых организмов. Например, образование аминокислот в атмосфере вулканических газов при грозовых разрядах.


Абиотическая среда. Совокупность неорганических (абиотических) факторов (условий) обитания организмов. Обычно абиотическую среду подразделяют на комплексы химических и физических факторов.


Абиотический фактор (от греч. а — частица отрицания и bios — жизнь). Факторы неживой внешней среды, влияющие на жизнь и распространение животных и растений или биоценозов: температура, влажность, свет, химизм, плотность, давление среды и т. п. Абиотические факторы противопоставляют биотическим факторам.


Абиоцен. Совокупность абиотических факторов внешней среды.


Абляция. Полифункциональный физический термин, обозначающий процесс сноса вещества с поверхности твердого тела обтекающим потоком. В физике твердого тела — удаление (испарение) вещества с поверхности под воздействием лазерного излучения.


Абсолютная влажность. Количество водяного пара в единице объема воздуха, г/см3. Иногда называют также упругостью водяного пара.


Абсолютная погрешность. Отклонение результата анализа от истинного содержания элемента, выраженное в единицах концентрации.


Абсолютная скорость иона. Скорость движения иона в электрическом поле, отнесенная к напряженности электрического поля.


Абсолютная специфичность. Исключительная избирательность фермента, позволяющая ему катализировать реакцию только с одним субстратом в случае мономолекулярной реакции или реакцию с одной парой субстратов в случае бимолекулярной реакции.


Абсолютная энтропия. Для вещества или процесса — изменение доступной энергии при теплопередаче при данной температуре. Математически энтропия равна теплопередаче, деленной на абсолютную температуру, при которой происходит процесс. Увеличение энтропии происходит в процессах передачи большого количества теплоты, при передаче теплоты при низкой температуре. Абсолютную энтропию измеряют в Дж/К.


Абсолютный нуль. Температура по шкале градусов Кельвина, при которой энтропия чистых веществ в виде идеальных кристаллов равна нулю.


Абсорбция. 1) Физико-химический процесс поглощения вещества из раствора жидкостями или твердыми телами, при котором это вещество проникает внутрь абсорбента. 2) Элиминация определенных субстанций из смеси, например, в иммунологии образование комплекса антиген-антитело. 3) Истощение сыворотки антигеном или вакцины антителом. В иммунологии используют для удаления из иммунных сывороток антител нежелательных специфичностей. Для этого иммунную сыворотку инкубируют с избыточным количеством антигенов, например, живых или убитых бактерий, содержащих групповые антигены, но не имеющих антигенов, к которым получается сыворотка. 4) Доказательства антигенной идентичности или гетерогенности двух штаммов бактерий. 5) Специфическая сорбция вируса клеткой. В общем случае процесс объемного поглощения одного вещества другим, то есть во всем объеме сорбента — вещества-поглотителя.


Абсцизовая кислота. Гормон растений, индуцирующий период покоя и способный тормозить рост. Накапливается осенью в семенах и почках, ускоряет образование отделительного слоя при листопаде, тормозит рост отрезков стеблей и колеоптилей. Стимулирует закрытие устьиц. Уровень кислоты в тканях зависит от соотношения скорости ее синтеза и распада. Биосинтез абсцизовой кислоты и гормонов роста (гиббереллинов) происходит из мевалоновой кислоты. Существует система переключения путей превращения мевалоновой кислоты в абсцизовую кислоту или гиббереллины. По химической природе — изопреноид. Перемещается по организму растений пассивно, по проводящим элементам ксилемы и флоэмы. Рост концентрации подавляет эффекты фитогормонов-активаторов (гиббереллинов, ауксинов, цитокининов). Спектр эффектов, вызываемых этим фитогормоном, весьма разнообразен.


Автоадсорбция. Изменение структуры (сгущение, уплотнение) поверхностного слоя в однокомпонентной системе. Применяют для исследования и характеристики физико-химических свойств поверхностных слоев различных жидких веществ.


Автоингибитор. Продукт обмена популяции организмов, накапливающийся во внешней среде и действующий как ингибитор или токсин на организмы.


Автокатализ. Ускорение реакции, обусловленное накоплением конечного или промежуточного продукта, обладающего каталитическим действием в данной реакции. Ускорение биохимической реакции под влиянием одного из ее продуктов. Пример автокатализа — образование трипсина из трипсиногена: в этой реакции трипсин является автокатализатором. Автокатализ — «самосплайсинг», или автономный сплайсинг РНК, происходящий без участия каких-либо белков, т. е. сама РНК выступает как автокатализатор (рибозим), расщепляет сама себя, но не ускоряет саму реакцию.


Автоклав. Аппарат для стерилизации объектов высокотемпературным насыщенным водяным паром (до 138 °С) под давлением (до 2,5 aтм.) перевязочного материала, инструментов, лабораторной посуды, питательных сред, белья, микробных культур и инфекционного материала.


Авторегуляция. Способность клеток сохранять свой состав и свойства на относительно постоянном уровне независимо от меняющихся условий среды. Регуляция химической деятельности клетки достигается с помощью ряда процессов, среди которых особое значение имеет изменение структуры самой цитоплазмы, а также структуры и активности ферментов. Регуляция зависит от температуры, степени кислотности, концентрации субстрата, присутствия в растворе некоторых макро- и микроэлементов. Например, фермент желудочного сока пепсин активен в кислой среде, при подщелачивании его активность падает и вновь восстанавливается только при подкислении среды. Аналогичная закономерность наблюдается и в случае снижения и повышения температуры. Локальное разрушение плазматической мембраны служит сигналом, запускающим процесс синтеза строительного материала — структурных белков и липидов; восстановление структуры мембраны прекращает интенсивный синтез этих веществ. Благодаря авторегуляции количество всех химических компонентов поддерживается в клетке на постоянном уровне. Кроме того, для живых систем характерны такие черты, как высокая степень организации, упорядоченность строения и поведения, хорошая приспособленность к среде обитания, дискретность, ритмичность, энергозависимость от окружающей среды и др.


Агрегат (от лат. aggrego — присоединяю, включаю). 1) Составная часть мицеллы лиофобного золя, нерастворимая в дисперсионной среде, кристаллическая или аморфная микрочастица. 2) Скопления одного или нескольких минералов, образующих горную породу, руду, сферолит, друзу и др. Агрегаты могут быть плотными, рыхлыми, землистыми, зернистыми, игольчатыми, шестоватым, сплошными, скорлуповатыми, натечными и т. д. 3) Трехмерное естественное образование, представляющее собой плотное скопление элементарных частиц определенной формы. В микроморфологии — основная единица сложения.


Агрегативная устойчивость. Устойчивость частиц дисперсной фазы к взаимному слипанию (укрупнению).


Агрегация. 1) Процесс объединения элементов в одну систему. 2) Объединение, симулирование каких-либо однородных показателей с целью получения более общих показателей.


Агрономия. Наука, изучающая совокупность знаний и приемов ведения сельскохозяйственного производства, то есть комплекс теоретической базы полеводства и практических приемов по возделыванию сельскохозяйственных культур, принципов их переработки. В настоящее время агрономия включает множество разделов, таких как: земледелие, агрохимия, агрофизика, растениеводство, семеноводство, генетика и селекция, мелиорация, фитопатология и т. д.


Агрохимия, агрономическая химия. Наука, изучающая химические и биохимические процессы, протекающие в почве и растениях, минеральное питание растений, применение удобрений и приемы мелиорации с целью улучшения плодородия почв, повышения урожайности сельскохозяйственных культур.


Адгезия. Явление соединения приведенных в контакт поверхностей конденсированных фаз. В биологии: 1) Способность клеток слипаться друг с другом и с различными субстратами, обусловленная химическим составом плазматической мембраны. Для большинства клеток характерна избирательная адгезия, с нарушением избирательности связана способность опухолевых клеток к метастазированию. 2) Прочная связь между твердой поверхностью и жидкостью, ее омывающей. Адгезия обусловлена силами межмолекулярного взаимодействия в области контакта разнородных сред (жидкость — твердое тело). Отчасти благодаря адгезии между стенками сосудов проводящей системы и движущейся внутри сосудов жидкости обеспечивается неразрывность многометрового столба воды в стволах высоких деревьев.


Адгезия терминальная. Тенденция к неспецифической конъюгации хромосом концами.


Аддитивность. Сложение (суммирование) эффектов комбинации факторов химической, физической и биологической природы. Аддитивность может быть полной (если воздействие агентов представляет собой сумму эффектов от действия каждого агента) и неполной (если величина воздействия меньше суммы эффектов от влияния каждого агента, но больше, чем от действия какого-либо одного из них).


Аддукт. Продукт химической реакции, в результате которой дополнительная малая химическая группа соединяется с относительно большой молекулой реципиента. Пример: алкилирующий агент метансульфонат может присоединять этильную группу к молекулам гуанинав ДНК. Этот этилированный гуанин представляет собой аддукт ДНК.


Адиабатический процесс (от греч. adiabatos — запертый). В атмосфере — изменения состояния атмосферного воздуха, происходящие без теплообмена с окружающей средой (т. е. адиабатически). Температура воздуха при адиабатическом процессе меняется вместе с изменением давления, т. е. за счет сжатия или расширения воздуха (повышение температуры в первом случае и понижение — во втором). Адиабатическое понижение давления и температуры происходит преимущественно при восходящем движении воздуха; повышение — при нисходящем. В сухом или влажном ненасыщенном воздухе (сухо-адиабатический процесс) адиабатическое понижение или повышение температуры на каждые 100 м подъема или опускания равно 1 °С. В воздухе, насыщенном водяным паром (влажно-адиабатический процесс), эта величина меньше 1 °С на 100 м вследствие выделения скрытого тепла при конденсации в поднимающемся воздухе или перехода тепла в скрытое состояние при испарении капель в опускающемся воздухе. С адиабатическим процессом связаны важнейшие процессы образования облаков. Адиабатический процесс — это термодинамический процесс, который осуществляется в адиабатической термодинамической системе без теплообмена с внешним миром. Пример: изменение термодинамического состояния воздуха в атмосфере без обмена теплом между ним и средой (земной поверхностью, космосом, другими массами воздуха).


Адроон. Класс элементарных частиц, подверженных сильному взаимодействию и не являющихся истинно элементарными с точки зрения кварковой теории.


Адсорбат. Вещество, которое самопроизвольно концентрируется (адсорбируется) на поверхности раздела фаз.


Адсорбент. Вещество, на поверхности которого идет адсорбция. Как правило, это тело с большой удельной (внутренней или наружной) поверхностью. На этой поверхности происходит накопление (адсорбция) веществ из соприкасающихся с ней газов или растворов. Например, в иммунологических исследованиях в качестве адсорбентов служат бактериальные взвеси, высушенные ткани органов (например, печени), эритроциты и т. д.


Адсорбция. Процесс концентрирования одного вещества на поверхности другого вещества — адсорбента. Адсорбция происходит на межфазных поверхностях, адсорбироваться могут любые вещества. Так же как и абсорбция, адсорбция является разновидностью сорбции. Различают физическую адсорбцию, когда молекулы адсорбента сохраняют свою индивидуальность, и хемосорбцию. Вещество, на поверхности которого происходит адсорбция, называют адсорбентом, а поглощаемое из объемной фазы — адсорбатом. В биологии: удаление из антисывороток всех антител, реагирующих с гетерологическими антигенами. Физико-химический процесс выделения вещества из раствора (сыворотки), при котором оно распределяется на поверхности адсорбента. Метод адсорбции, применяемый в иммунологии, основан на добавлении к антисыворотке гетерологичного антигена с целью удаления всех реагирующих с ним антител. В иммунологии адсорбцию используют для изготовления адсорбированных вакцин (например, на гидроксиде алюминия) и диагностикумов (например, на латексе, сефадексе). В вирусологии адсорбция обозначает концентрирование вирионов из крови и лимфы под влиянием межмолекулярных сил на поверхности клеток, например, на эндотелии сосудов. Массивное покрытие клеток слоем вирионов ведет к гибели клеток, которое называется токсическим действием. Также — процесс соединения рецепторов вирусов и вирусных антирецепторов клетки, который в последующем ведет к проникновению вириона в цитоплазму клетки. В таком случае правильнее применять термин рецепторная адсорбция или прикрепление.


Адсорбция гидролитическая. При применении угля в качестве адсорбента для растворов электролитов наблюдается селективная адсорбция. Смысл ее заключается в том, что из нейтральных растворов солей уголь поглощает или только основание, или только кислоту, т. е. нейтральный до адсорбции раствор становится кислым или основным.


Адсорбция локализованная. Молекулы адсорбата закреплены на поверхности адсорбента.


Адсорбция нелокализованная. Молекулы адсорбата свободно передвигаются по поверхности адсорбента.


Адсорбция обменная. Эквивалентный обмен ионов одного знака (катионы или анионы) между двойным электрическим слоем адсорбента и средой.


Адсорбция предельная. Характеризует полное насыщение поверхности адсорбированными молекулами.


Адсорбция физическая. Возникает за счет Ван-дер-Ваальсовых взаимодействий и является обратимой. С увеличением концентрации или давления адсорбция увеличивается; с повышением температуры — уменьшается.


Адсорбция химическая (хемосорбция). Осуществляется только путем химического взаимодействия, является необратимой. С увеличением концентрации или давления хемосорбция увеличивается; с повышением температуры — увеличивается. Химическая адсорбция, в свою очередь, делится на молекулярную (если адсорбируются молекулы вещества) и ионную (при адсорбции ионов).


Азеотропные смеси. Жидкие смеси, в которых в условиях равновесия состав жидкой фазы равен составу паровой фазы. При перегонке таких смесей образуется конденсат того же состава, что и исходный раствор. Разделение азеотропных смесей может быть осуществлено методом ректификации. Азеотропные смеси представляют собой двойные, тройные и многокомпонентные системы. Компонентами системы, как правило, являются вещества из одного гомологического ряда. В многокомпонентных системах наблюдается явление полиазеотропии, когда гомологи и их изомеры из различных рядов могут образовывать между собой большое число двух- и многокомпонентных азеотропных смесей в широком интервале концентраций. Примеры: вода (4%) — этанол (96%); вода (32%) — азотная кислота (68%).


Азотфиксация. Процесс связывания азота атмосферы и перевод его в азотсодержащие соединения микроорганизмами (свободноживущими или находящимися в симбиозе с растениями) или цианобактериями.


Аккумуляция. Процесс накопления на поверхности Земли, в организмах, в водоемах, в отстойниках инженерных сооружений продуктов эрозии и абразии, солей, органических остатков, различных загрязнений в результате деятельности человека, ветра, вод, ледников, вулканов и других биологических и геологических факторов. В результате аккумуляции на земной поверхности образуются специфические формы рельефа: аккумулятивные равнины, террасы, дельты, дюны, барханы, а также геохимические аномалии и др.


Аккумуляция веществ в почве. 1) Накопление химических элементов — биофилов (Са, К, Р, N, Mg) в результате избирательного поглощения их растениями из материнской породы и концентрации в гумусовом горизонте после разрушения органических остатков. 2) Накопление гумуса в верхнем, гумусо-аккумулятивном горизонте почв, после биологического разрушения органических остатков и биохимических реакций. 3) Накопление химических элементов и веществ, вымытых из верхних (элювиальных) горизонтов в средней или нижней части почвенного профиля (иллювиальных горизонтах) с образованием марганцево-железистых, карбонатно-кальциевых, гипсовых и других горизонтов. 4) Накопление солей из оросительных или грунтовых вод при испарении их через почву. 5) Накопление загрязняющих почву веществ, транспортируемых от источников загрязнения воздушным, водным транспортом или другими техногенными средствами.


Аккумуляция вод. 1) Временное накопление на поверхности водосбора влаги в виде снежного покрова, ледяной корки, талой или дождевой воды. 2) Увеличение запаса (накопление) подземных вод после таяния снега или выпадения жидких осадков. 3) Задержание воды в водохранилищах.


Аккумуляция загрязнителей организмами. Накопление в живых организмах вредных химических веществ в результате контакта их со средой. Загрязнители не всегда выводятся из организма с выделениями, поэтому на каждом следующем трофическом уровне может быть более высокая концентрация загрязнителей.


Активация. 1) Возбуждение или усиление активности; перевод в деятельное состояние; переход от состояния покоя к движению, развитию. 2) Возбуждение молекул, перевод молекул в состояние, в котором они легче вступают в химические реакции. 3) Специальная обработка пористых тел для увеличения их способности поглощать жидкости, газы и другие вещества.


Активация аминокислот. Реакция присоединения аминокислоты к своей транспортной РНК перед вступлением в процесс трансляции, является промежуточной реакцией в процессе соединения аминокислоты с молекулой АТФ, катализируется ферментом аминоацил-тРНК-­синтетазой; затем аминокислота присоединяется к тРНК с освобождением АМФ.


Активированный комплекс. Группировка атомов, соответствующая состоянию системы в решающий момент элементарного акта химической реакции. Используется в теории скоростей химических реакций.


Активность. Эффективная концентрация диссоциированной части электролита в растворе с учетом межионных взаимодействий. Активность (а) пропорциональна концентрации (С) через коэффициент пропорциональности (коэффициент активности — f):


a = f · C


Активные металлы. Металлы, стоящие в электрохимическом ряду напряжений металлов левее водорода. Металлы, находящиеся слева от алюминия включительно, относятся к наиболее активным металлам.


Активные соударения. В химических реакциях не каждое столкновение реагирующих веществ (атомов, молекул, частиц) приводит к их взаимодействию и образованию продуктов реакции. Реакция может проходить при столкновении активных (обладающих запасом энергии достаточным для преодоления энергетического барьера) молекул. Количество активных соударений при данной температуре пропорционально общему содержанию реагирующих молекул. При повышении температуры число активных соударений возрастает.


Активные центры. Каталитический центр. В ферментативном катализе — небольшой участок на поверхности молекулы фермента, непосредственно принимающий участие в катализе. Активные центры ферментов образуются на уровне третичной структуры, включают также субстрат-связывающий участок, отвечающий за специфическое комплементарное связывание субстрата и образование фермент-субстратного комплекса (ES). Активный центр не имеет строгих границ, каждый его компонент взаимодействует с другими участками (группами) молекулы фермента, что приводит к изменению химических характеристик функциональных групп, участвующих в катализе. От структуры активного центра зависит специфичность действия ферментов. Пример: в химотрипсине субстрат-связывающий участок имеет вид гидрофобного кармана, который связывает радикалы ароматических аминокислот, таких как фенилаланин. Данный фермент ускоряет гидролиз пептидных связей, образованных карбоксильной группой ароматических аминокислот.


Активный транспорт. Перенос веществ, осуществляемый против градиентов концентрации или электрохимического потенциала. Происходит с затратой энергии, например, АТФ, электромагнитной, энергии света, энергии, выделяющейся при окислении дыхательных субстратов (первичный активный транспорт), или за счет созданного на мембране трансмембранного потенциала (вторичный активный транспорт).


Активный участок антигена. Пространственное расположение аминокислотных остатков белка антигена, образующего на его поверхности участок, способный вступать во взаимодействие с комплементарным участком антитела или служить в качестве связующей группы.


Активный центр. 1) Часть молекулы фермента, которая ответственна за присоединение и преобразование субстрата. Взаимодействие фермента и субстрата возможно лишь при структурном соответствии конфигурации активного центра форме и размерам молекулы субстрата. Если вещество имеет строение, близкое к строению субстрата, но сходство с последним не полное, то возможно конкурентное ингибирование фермента. Например, малоновая кислота напоминает по своему строению янтарную кислоту. Однако это сходство является неполным. Поэтому малоновая кислота, связываясь с дегидрогеназой янтарной кислоты, занимает активный центр этого фермента и препятствует превращению янтарной кислоты. 2) Химическая группа молекул, определяющая специфичность их действия.


Активный центр фермента. Специфический участок на поверхности фермента, благодаря которому фермент проявляет специфичность в отношении субстрата. Ферменты, состоящие из одной полилептидной цепи, обладают одним активным центром.


Актуальная кислотность. Активная кислотность почвенного раствора, обусловленная содержанием ионов водорода (кислотность почвы). Выражается условной величиной рН (отрицательный десятичный логарифм концентрации ионов водорода Н+); при рН = 7 реакция почвенного раствора нейтральная, ниже 7 — кислая. Актуальная кислотность классифицируется по рН: 6–7 — нейтральные, 5–6 — слабокислые, 4–5 — среднекислые, 3–4 — сильнокислые.


Актуальная щелочность. Содержание в почвенном растворе или водной вытяжке гидролитически щелочных солей (при гидролизе образуются ионы ОН–), преимущественно карбонатов и гидрокарбонатов: Na2CO3, NaHCО3, Са(НСО3)2. Определяется значением рН водной вытяжки, а также титрованием кислотой в мг-экв. на 100 г почвы. К слабощелочным (рН = 7,6–7,5) относятся: черноземы южные, каштановые, сероземы с признаками солонцеватости; к щелочным (7,6–8,5) — солончаки; к сильнощелочным (рН > 8,5) — содовые солонцы и солончаки.


Актюатор. Исполнительное устройство, также называемое актуатор, передающее воздействие на объект. В технике под актюатором обычно понимается преобразователь входного сигнала (электрического, оптического, механического и др.) в выходной сигнал, действующий на объект управления. Актюаторами являются: электродвигатели, электрические, пневматические и гидравлические приводы, релейные устройства и т. д.


Алкозоль. Коллоидный раствор в спирте.


Аллотропия. Явление образования нескольких простых веществ (аллотропных модификаций) из атомов одного химического элемента. Аллотропия может быть вызвана либо различным числом атомов в молекуле, либо различием кристаллических модификаций.


Пример 1. Химический элемент кислород образует молекулы кислорода (О2) или озона (О3), которые обладают разной реакционной способностью (озон — более активный реагент), разными физико-химическими характеристиками. Например, температура кипения кислорода — 183 °С, а озона — 112 °С, температура плавления кислорода — 219 °С, озона — 193 °С.


Пример 2. Углерод имеет следующие имеющие наибольшее практическое значение аллотропные модификации: графит (слоистая структура с sp2-гибридизацией орбиталей атомов углерода; темно-серое мягкое кристаллическое вещество с металлическим блеском), алмаз (кристаллическая структура с sp3-гибридизацией орбиталей атомов углерода; бесцветное прозрачное кристаллическое вещество с высоким показателем преломления света, твердое, но хрупкое), полиин (волокнистая структура, черный мелкокристаллический порошок, полупроводник), поликумулен (волокнистая линейная структура с sp-гибридизацией орбиталей атомов углерода).


Пример 3. Ромбическая и моноклинная кристаллические аллотропные модификации серы. В обычных условиях устойчива ромбическая модификация, при 95 °С ромбическая сера переходит в моноклинную.


Амбигель. Представляет собой продукт, который получается в результате удаления водного или органического растворителя гидрогеля или алкогеля. Процесс проводят при давлении 1 атм., малых плотностях, близких к плотности аэрогелей. При этом полярный растворитель последовательно заменяют на неполярный, а модификация поверхности осуществляется при низких скоростях подъема температур. Относится к нанотехнологическим терминам.


Амфифильный. Вещество (вещества), которое проявляет одновременно свойства лиофильности (гидрофильности) и лиофобности (гидрофобности). Как правило, это молекулы органических веществ, содержащие лиофобные (гидрофобные) группы, такие как углеводородные радикалы CH3–, C2H5–, C3H7– и др., а также лиофильные (гидрофильные) группы, такие как NH2–, –COOH и др. Например, уксусная кислота СН3СООН растворяется (смешивается) в полярных лиофильных растворителях (вода, этиловый спирт) и неполярных лиофобных (бензол). Способность молекулы проявлять амфифильные свойства имеет важное значение в химической технологии, биохимии, переработке растениеводческой и животноводческой продукции, производстве продуктов питания, лакокрасочной промышленности и других отраслях, где протекают процессы мицеллообразования, агрегации, флотации, капсулирования, образования биослоев, транспорта химических веществ через биомембраны и пр.


Амфолитоиды. Коллоиды амфотерного характера, у которых обменными ионами могут быть, в зависимости от реакции среды, как водородные, так и гидроксильные ионы и которые могут адсорбировать как катионы, так и анионы. Процессы обменной адсорбции на поверхности амфолитоида можно представить следующими схемами:


Х – ОН + анион = Х – анион + ОН– (в кислой среде);


ХО – Н + катион = ХО – катион + Н+ (в щелочной среде),


где Х — амфолитоид.


Амфотерность. Способность некоторых соединений проявлять в зависимости от условий как кислотные, так и основные свойства. Амфотерными свойствами обладает, например, гидроксид алюминия Al(OH)3, гидроксид цинка Zn(OH)2, аминоуксусная кислота NH2CH2COOH и многие другие соединения.


Анализ (от греч. analysis — разложение). 1) Метод научного исследования, состоящий в мысленном или фактическом разложении целого на составные части; наряду с синтезом имеет большое значение в научном познании. 2) Разбор, рассмотрение чего-либо. 3) Химический анализ — совокупность операций с целью определения вещественного состава исследуемого объекта (качественный анализ) или количественного определения его составляющих (количественный анализ). 4) Спектральный анализ — качественное и количественное определение веществ по характерным спектральным линиям составляющих элементов и их плотности, зависящей от концентрации. 5) Математический анализ — разработка и использование приемов вычислений при решении различных вопросов о величинах и степени их достоверности. 6) Структурно-функциональный анализ — совокупность операций, с помощью которых объект рассматривается как целостное образование, а в качестве основного средства его расчленения выступает выявление различных свойственных объекту функций.


Анализ агрегатный (структурный). Применяется в почвоведении для определения содержания в почве различных по диаметру и свойствам агрегатов, в процентах от веса сухой почвы. Анализ агрегатный может быть сухим или мокрым. В первом случае почва просеивается на ситах в воздушно-сухом состоянии, во втором — в воде.


Анализ гравиметрический. Основан на выделении определяемого компонента из раствора в виде малорастворимого соединения и определении массы осадка и продукта его дальнейшей обработки. Относительная ошибка гравиметрического анализа составляет 0,1%; при соблюдении мер предосторожности и чувствительности аналитических весов может быть уменьшена до 0,01%. Достоинства метода: высокая точность, отсутствие необходимости калибровки, простота операций и оборудования. Недостатки: значительный расход времени, непригодность для определения микроколичеств веществ.


Анализ гранулометрический (механический). Применяется в почвоведении. При анализе происходит разрушение почвенных агрегатов на элементарные частицы почвы с последующим определением их фракционного состава в процентах от веса сухой почвы.


Анализ групповой. Метод аналитической характеристики почв, состоящий в расчленении ее не на индивидуальные компоненты, а на отдельные аналитические группы по определенной совокупности их признаков. Например, анализ фракционного состава почв, группового состава гумуса и др.


Анализ дисперсионный. При дисперсионном анализе полидисперсных систем определяют время осаждения частиц отдельных фракций, рассчитывают скорости их осаждения и соответствующие им размеры частиц. Для этого сначала получают зависимость осевшего осадка от времени, строят график этой зависимости, называемый кривой седиментации, по которому затем определяют все необходимые характеристики дисперсной системы.


Анализ седиментационный. Метод седиментационного анализа дисперсности основан на измерении скорости осаждения частиц. Анализ проходит в жидких веществах, это могут быть суспензии, эмульсии, порошки. Контролируют скорость осаждения частиц, как правило, размером от 10–5 до 10–2 см и по уравнениям движения рассчитывают размеры частиц, что позволяет затем рассчитать удельную поверхность частиц.


Аналитическая химия. Раздел химии, в котором изучают химический состав веществ и их структуру. Качественный анализ в аналитической химии позволяет идентифицировать в анализируемом образце находящиеся в нем химические вещества, а количественный анализ дает ответ на вопрос, какова концентрация каждого вещества в образце.


Анаэробные процессы (от греч. an — отрицательная приставка, aer — воздух и bios — жизнь). Микробиологический, биохимический и химический процессы, протекающие при недостатке или отсутствии кислорода воздуха. Широко распространены в застойных водоемах (во многих озерах, в глубинных слоях Черного моря и др.), а также в болотах и переувлажненных почвах и грунтах.


Ангстрем. Внесистемная единица измерения длины, равная 0,1 нм, или 10–10 м. Используется при измерениях на атомно-молекулярном уровне, для измерения субмикроскопических структур клетки, изучаемых при помощи электронного микроскопа. Названа в честь шведского физика Андерса Ангстрема.


Анионит. Ионообменная смола, которая обменивает анионы, в том числе гидроксил-ион.


Анод. Электрод, на котором происходит окисление.


Антагонизм электролитов. Противодействие ионов друг другу при коагуляции благодаря способности одного из ионов электролита в растворе понижать коагулирующую силу другого иона.


Антиоксиданты (антиокислители, антиоксигены). Природные или синтетические вещества, обладающие способностью тормозить окисление органических соединений (ингибиторы окисления). Обладают также радиозащитным действием, что позволяет использовать антиоксиданты для повышения радиоустойчивости организма и в качестве ранней патогенной терапии лучевых поражений. К ним относятся цистеин, тиомочевина, лимонная и аскорбиновая кислоты, токоферол, каротиноиды, лецитин и др.


Антипирены. Химические вещества, способствующие снижению скорости горения, распространения пламени. Примеры: фосфат аммония, сульфат аммония, соединения бора, добавление которых в пропиточные растворы для обработки тканей, древесины, пластиков, красок и других материалов замедляет их горение.


Антрацит. Ископаемый уголь наиболее высокой степени метаморфизма. Имеет серовато-черный или черно-серый цвет с металлическим блеском. Анизотропен, в пористой структуре преобладают микропоры объемом 0,072–0,075 см3/г, характеризуется наибольшей твердостью и электропроводностью в ряду твердых горючих ископаемых, высокой плотностью (1,5–1,7 г/см3).


Антропогенное загрязнение. Загрязнение окружающей среды, возникающее в результате хозяйственной деятельности людей, в том числе их прямого или косвенного влияния на состав и концентрацию природных веществ в результате выбросов антропогенных загрязнителей.


Антропогенные факторы. Группа экологических факторов, включающая различные формы воздействия человека на растительность и животное население. Антропогенные факторы могут быть прямыми (истребление, завоз и акклиматизация, охрана) и косвенными (изменение ландшафтов и их отдельных компонентов — вырубка леса, распашка, выжигание и пр.). Косвенные антропогенные факторы вызывают сильные изменения в мире животных и растений, охватывающие одновременно значительное число видов. Антропогенные факторы могут повлечь за собой изменение климата, рельефа, растительности, почв и биогеохимических круговоротов веществ в природе.


Аппаратурная погрешность. Погрешность измерений, возникающая только по причине нестабильности работы измерительного прибора. В отличие от воспроизводимости, аппаратурная погрешность не зависит от подготовки пробы.


Аррениус Сванте Август (1859–1927). Шведский физико-химик. Член Шведской королевской академии наук. Один из основоположников физической химии. Автор теории электролитической диссоциации. Показал, что степень диссоциации молекул электролитов, определенная из показателей электропроводности, совпадает со степенью диссоциации, определенной из данных по повышению температуры кипения и понижению температуры замерзания растворов. Развил теорию активных молекул (активных соударений) для объяснения реакций в газах, ввел понятие энергии активации, предложил уравнение, которое позволяет из общего числа столкновений отобрать активные (приводящие к образованию продуктов химической реакции) и объяснить зависимость скорости химической реакции от температуры (уравнение Аррениуса). Лауреат Нобелевской премии (1903).


Ассемблер. Другие названия — наноассемблер, конструктор. Кибернетическое устройство размерами 1–100 нм, которое может в соответствии с заложенной программой конструировать новые молекулы из заданного набора атомов. При сборке используются принципы механохимии. Для конструирования молекулярных структур необходим нанокомпьютер, наноманипуляторы и наносенсоры.


Атом. Наименьшая частица химического элемента, входящая в состав молекул вещества. Атом — это электронейтральная частица, состоящая из положительно заряженного атомного ядра и вращающихся вокруг него отрицательно заряженных электронов. Атомная масса и заряд ядра атома указаны в Периодической системе элементов Д. И. Менделеева. Наномашины (ассемблеры) будут работать не с ядрами, а с атомами.


Пример: атом серы имеет относительную атомную массу 32 а.е.м. и заряд ядра, равный +16. В состав ядра входят 16 протонов, 16 нейтронов (32 – 16), электронная оболочка состоит из 16 электронов.


Атомная орбиталь. Область пространства вокруг ядра атома, где вероятность нахождения электрона максимальна.


Атомно-молекулярное учение. Учение, в основе которого лежит принцип дискретности вещества — любое вещество не есть сплошной объект, а состоит из отдельных физически неделимых частиц. Для большинства веществ такие частицы представляют собой молекулы. Т. е. молекула — это наименьшая частица вещества, обладающая его химическими свойствами. Атом — наименьшая частица химического элемента, обладающая его свойствами. Атомы в молекуле соединены химическими связями. Не всегда частицы, образующие вещество, представляют собой молекулы. Многие вещества в твердом или жидком состоянии имеют не молекулярную, а ионную структуру. Некоторые вещества имеют атомное строение.


Атомный вес. Значения атомных весов элементов основаны на шкале 12С = 12 (точно), рекомендованной Международной комиссией по атомным весам и принятой Генеральной ассамблеей Международного союза чистой и прикладной физики взамен существовавших прежде «химической» и «физической» шкал. В этой шкале моль вещества равен такому его количеству, которое содержит такое же число атомов, как и 12 г чистого нуклида 12С. Значения масс нуклидов дейтерия, трития и 3Не также основаны на шкале 12C = 12 (точно). Для многих радиоактивных элементов значения атомных весов зависят от метода получения.


Ацидоиды. Коллоиды кислотного характера, у которых обменными ионами являются ионы водорода, способные замещаться катионами.


Аэрация почвы (от греч. аеr — воздух). Газообмен почвенного воздуха с атмосферным. При аэрации почвы происходит обогащение почвенного воздуха кислородом, а приземного надпочвенного — углекислотой. Многие биологические процессы в почве связаны с расходованием кислорода почвенного воздуха. Аэрация почвы необходима для роста и развития растений и является одним из показателей почвенного плодородия. Аэрация почвы регулируется агротехникой, мелиорацией, а также приемами, улучшающими и закрепляющими структуру почв. Если объем пор суглинистых почв меньше 10%, то аэрация недостаточная, если 10–15% — удовлетворительная, если 15–20% — хорошая.


Аэрогель. Класс аморфных высокопористых материалов, имеющих объемную макроструктуру с характерным размером наноструктурных элементов 4–10 нм и представляющих собой гель, в котором жидкая фаза полностью замещена газообразной. Такие материалы обладают одновременно рядом уникальных свойств: очень низкой плотностью, высокой твердостью, прозрачностью, жаропрочностью и т. д. Известны аэрогели на основе аморфных оксидов: диоксида кремния SiO2, оксида алюминия Al2O3, оксидов Cr, Sn, W, Fe, Li, Na, Ca, Mg, Ba, Sb, Te, Ni, Ge, Zn, Mn и других элементов. Получены также аэрогели на основе углеродных нанотрубок. Аэрогель на основе SiO2 представляет собой разветвленный трехмерный кластер, напоминающий древовидную сеть из наночастиц размером около 4 нм. Пространство между кластерами заполнено воздухом. Так как характерный размер таких пустот (∼100 нм) в десятки раз превышает размер кластеров, то материал получается очень легким. Аэрогели на основе Al2O3, представляют собой спектрально чистый гидратированный аморфный оксигидроксид алюминия AlOOH (Al2O3⋅H2O), который получают селективным окислением галлий-алюминиевых или свинцово-алюминиевых расплавов. Этим же способом получают аморфные высокодисперсные оксиды других металлов. Углеродные аэрогели состоят из наночастиц, ковалентно связанных друг с другом. Они электропроводны и, благодаря большой площади внутренней поверхности (до 800 м2 × г–1), применяются в производстве суперконденсаторов. Уникальными свойствами аэрогелей являются низкая плотность (от 0,002 до 0,25 г/см3), высокоразвитая удельная поверхность, малая подверженность старению и высокие сорбционные свойства (эффективно поглощают NO, NO2, СО, СO2, непредельные углеводороды). Аэрогели разного состава используются как тепло- и электроизоляционные материалы, нанодисперсные добавки в гибридных органо-неорганических композиционных материалах, носители катализаторов и сорбентов, наноразмерные фильтры.


Аэрозоли. Коллоидные системы, в которых дисперсионной средой является газ (большей частью воздух), а дисперсной фазой — твердые или жидкие тела высокой степени дисперсности. Отличаются крайней агрегативной неустойчивостью. Эти системы обладают лишь кинетической устойчивостью и поэтому не могут существовать при высоких концентрациях. Число частиц в 1 см3 аэрозоля редко может превышать 107 шт. Частицы в аэрозолях быстро оседают под действием силы тяжести. Благодаря более интенсивному броуновскому движению в газах коагуляция в аэрозолях протекает очень быстро и сильно возрастает с увеличением концентрации аэрозоля. Если частицы обладают одинаковыми зарядами, это способствует их рассеянию. При наличии же противоположно заряженных частиц коагуляция аэрозоля ускоряется. Аэрозоли имеют большое практическое значение. Облака и туманы в атмосфере, именно с ними связаны дождь, снег, гроза, что играет огромную роль в природе и в народном хозяйстве. Туманы, получаемые механическим диспергированием, применяют для опыления, опрыскивания, увлажнения, создания защитных завес и т. д.


Базоиды. Коллоиды основного характера, содержащие в качестве обменных ионов гидроксильные ионы, способные замещаться анионами.


Баланс вещества почвы. Соотношение приходной и расходной статей изменения любого компонента почв за единицу времени. Выражается в весовых или энергетических единицах. Баланс вещества почвы определяют за сутки, сезон, год и многолетний период. Баланс может быть положительным, отрицательным и равновесным (он же нулевой, неизменный). При положительном балансе поступление, образование компонента больше отчуждения, а конечный запас больше начального. При равновесном балансе конечный суммарный запас компонента почв равен его начальному суммарному запасу.


Баланс водный. Совокупность всех видов поступления влаги в почву и ее расход в количественном выражении за определенный промежуток времени и для определенного слоя и профиля почв. Выражается в миллиметрах водного слоя, м3/га или в т/га. Запас воды в почве пополняется за счет атмосферных осадков, конденсированной атмосферной влаги, воды, поступающей с соседних участков в виде поверхностного и грунтового стока, а также за счет капиллярно-подпертой влаги и оросительной воды. Основными расходными статьями являются: сток поверхностный, почвенный и грунтовый, десукция и испарение.


Баланс солевой. Учет прихода и расхода солей в почвенном профиле за учитываемый период. Передвижение солей осуществляется преимущественно в форме растворов. Засоление профиля конкретной почвы можно объяснить балансом солевым в прошлом и настоящем: чем выше минерализация и испарение воды и чем меньше ее расход на вертикальную или горизонтальную фильтрацию, тем более неблагоприятен водно-солевой баланс почвы. Если вынос преобладает над приходом, происходит рассоление почв.


Баланс увлажнения (франц. balance, букв. — весы). Разность между количеством осадков и испаряемостью за некоторый период времени в данном месте в миллиметрах. Положительный баланс увлажнения означает избыток влаги, отрицательный — недостаток. Оценивается в мм, м3/га, т/га. В пустынях он отрицательный (до –5000 мм), в переувлажненных местах положительный (до +11 000 мм).


Баланс энергии. Соотношение количества энергии, поступившей в организм с питанием, например, для животных с кормом, и энергией, выделенной из тела с калом, мочой, газами, молоком. Разность между поступившей и выделенной энергией составляет энергетическую ценность отложений или расхода белков, жиров и углеродов организма в конкретный период времени.


Балк-технология. Технология, основанная на манипуляции совокупностями атомов и молекул (массовая технология или материал), а не индивидуальными атомами.


Барьер кислородный. Проявляется на границе глеевого и окислительного горизонтов: на ней осаждается Мn, в меньшей степени — Fe.


Барьеры биогеохимические. Зоны совместного действия живых и неживых объектов с накоплением Р, S, Са, К, Mg, Na, Sr, Mn, Cu, Zn, Mo, Co, As, Ag, Ba, Pb.


Барьеры биологические. Участки в пределах биосферы, на которых происходит изменение термодинамических или физико-химических условий, приводящее к увеличению или уменьшению подвижности элементов, обусловленного деятельностью организмов. Выделяют четыре типа барьеров: 1) мембранный — связан с избирательной проницаемостью биологических мембран для отдельных элементов; 2) физиологический — связан с избирательным усвоением пищи в желудке и кишечном тракте животных; 3) трофический — определяется избирательным поеданием животными определенных частей растений или других животных; 4) географический — определяется избирательным обитанием и, соответственно, питанием животных только в определенной части биогеоценоза БГЦ.


Барьеры геохимические. Участки, зоны почв, место в почвенном профиле, где изменения условий миграции приводят к уменьшению подвижности тех или иных веществ и их накоплению на этих участках. Их наличие связано с географической зональностью природных условий, с закономерной геохимической дифференциацией геосистем и определенным составом вод. Геохимические барьеры проявляются на поверхности, границе, внутри генетических горизонтов. Для арктической зоны характерны окислительные и испарительные геохимические барьеры; для тундровой — восстановительные и кислые; для хвойно-широколиственно-лесной — окислительные, восстановительные, кислые и адсорбционные; для степной и сухостепной — сульфатные, карбонатные, абсорбционные; для засоленных и щелочных почв — сульфатные, карбонатные, щелочные и испарительные; для субтропических и тропических лесов и саванн — окислительные, кислые и адсорбционные; для тропических влажных лесов и саванн — окислительные, кислые и адсорбционные.


Барьеры испарительные. Энергичное удаление воды снизу вверх при испарении. Встречаются в шоровых солончаках, соленых озерах, засоленных почвах и приводят к концентрации Са, Na, К, Mg, F, S, Sr, CI, Rb, Zn, Si, N, U, Mo. Различают верхний и нижний испарительные барьеры на уровне грунтовых вод, современные и древние.


Барьеры кислые. Возникают при резком падении кислотности. При таких барьерах осаждаются анионогенные элементы Si, Se, Mo, Ge.


Барьеры сорбционные. Места встреч вод и сорбентов с отрицательно заряженными коллоидами — гумусом. Накапливаются Са, К, Mg, Zn, Ni, Сu, Со, Pb, U, Hg. С глинистыми минералами и гидроксидами Mn накапливаются Р, S, V, Cr, As, Mo. Эти барьеры характерны для краевых зон болот, иллювиальных глинистых горизонтов, почв и кор выветривания, гумусовых горизонтов почв, контакта глин и песков аллювия.


Барьеры термодинамические. Места выхода карстовых вод с осаждением СаСО3, СО2.


Барьеры щелочные. Места, где на коротком расстоянии и времени кислая среда сменяется щелочной. В этой зоне концентрируются Fe, Са, Mg, Mn, Ва, Sr, Cr, Zn, Си, Ni, Со, Pb, Cd.


Белки. Биополимеры, образованные полипептидами, построенными из остатков α-аминокислот. Различают биополимеры: глобулярные — белки, форма которых приближается к сферической, а отношение длины пептидной цепи к ее ширине меньше 10; фибриллярные — волокнистые белки, у которых отношение длины пептидной цепи к ее ширине больше 10.


Белок зеленый флуоресцентный. Белок, обладающий зеленым свечением при освещении светом с определенной длиной волны. Впервые был выделен из медузы Aequoreavictoria (1962). В настоящее время на основе GFP созданы другие белки, светящиеся различными цветами. GFP стал одним из важнейших инструментов в биохимии, молекулярной биологии и нанобиотехнологии.


Бертло — Томсена принцип. В 1866 г. французский химик Пьер Бертло, в развитие термодинамических идей датского термохимика Ханса Томсена, сформулировал принцип, согласно которому всякий простой или сложный химический процесс сопровождается тепловым эффектом, и в системе взаимодействующих веществ наиболее вероятен тот процесс, который протекает с наибольшим выделением теплоты. Другая формулировка — все самопроизвольные процессы протекают в направлении большего теплообразования.


Бета-излучение. Электронное (и позитронное) ионизирующее излучение с непрерывным энергетическим спектром, возникающее при бета-распаде нестабильных атомных ядер (при радиоактивном распаде ядра) некоторых природных атомов и большого количества их изотопов, образующихся при ядерных взрывах, в ядерных реакторах и т. п. Бета-излучение оказывает значительное повреждающее действие на биологические объекты. Свободный пробег бета-частиц в воздухе составляет в среднем 30 см. Проникающая способность не превышает нескольких миллиметров.


Биоаккумуляция. Избирательное поглощение какого-либо элемента из внешней среды живым организмом.


Биоактивация. Процесс биотрансформации, приводящий к образованию биологически активных метаболитов.


Биобезопасность. Система мероприятий (законодательных актов и др.), направленная на обеспечение эффективного использования достижений генетической инженерии и биотехнологии, не допускающая при этом неблагоприятных экологических последствий и непосредственной угрозы здоровью людей.


Биогаз. Смесь газов, среди которых главным образом метан, как и в составе природного газа, получаемая при протекании биологических процессов с участием отходов растительного и животного происхождения (перегнивание в генераторах биогаза или автоклавах). Биогаз используется как источник энергии для отопления или для получения электрической энергии. Остаточный продукт переработки отходов в биогаз может использоваться как удобрение.


Биогель. Инертные разветвленные высокомолекулярные вещества, образующие гели с порами заданного размера; используются для разделения и/или выделения макромолекул.


Биогенез. Теория происхождения жизни на Земле, отрицающая возможность возникновения живых существ из неорганических соединений.


Биогенные элементы. Химические элементы, постоянно входящие в состав организмов и выполняющие определенные биологические функции. Важнейшие биогенные элементы — О (составляет около 70% массы организмов), С (18%), Н (10%), N, В, S, Са, К, Na, Сl. Биогенные элементы, необходимые организмам в ничтожных количествах, называются микроэлементами. Биогенные элементы участвуют в миграционных потоках между различными структурными составляющими в биогеоценозе и биогеокруговоротах. Содержание биогенных элементов в растениях зависит от вида, фазы вегетации, органа растений, почвенных и других условий среды. Известны растения — концентраторы биогенных элементов: бобовые — концентраторы Са, Мо; злаки — Si; береза — Мn и т. д. В районах распространения известняков растения содержат больше Са, в приморских районах — I, на рудных месторождениях — Сu, Zn, Pb и других элементов. Участвуют в биопроцессах около 70 элементов. Среднее содержание макроэлементов в организмах более 200 мг/кг живой массы, микроэлементов Zn, Аs, Мn, В, F, V, Br, Mo, Se и др. — от 0,1 до 1 мг/кг живой массы.


Биогеохимические провинции. Территории на поверхности Земли, различающиеся по содержанию в почвах и водах химических соединений, с которыми связаны проявления биологических реакций со стороны местной флоры и фауны. Биогеохимические провинции выделены по 30 элементам в связи с особенностями состава почвообразующих пород, наличием рудных месторождений, развитием элювиальных и аккумулятивных процессов, с региональными и локальными загрязнениями, обусловленными выбросами промышленных предприятий, накоплением остаточных количеств различных компонентов удобрений, пестицидов и другими причинами. Биогеохимические провинции бывают зональные и интразональные. Биогеохимическое районирование позволяет контролировать и осуществлять мероприятия по охране окружающей среды.


Биогеохимические циклы (биогеохимические круговороты). Обмен вещества и энергии между различными компонентами биосферы, обусловленный жизнедеятельностью организмов и носящий циклический характер. Биогеохимические циклы бывают планетарные и региональные; они привели к созданию устойчивого фона, характерного для той или иной местности. Этот фон специфичен для определенных регионов, в пределах которых по недостатку или избытку химических элементов выделяются геохимические аномалии — биогеохимические провинции. Биогеохимические циклы обеспечивают формирование биомассы культурных растений и гумусовых горизонтов почв.


Биогеохимический круговорот. Совокупность действия биогенных и абиогенных процессов, сложившихся в период появления биосферы и круговоротов.


Биодеградация. 1) Изменение структуры (качества) материалов или объектов под влиянием биологических факторов (обычно потеря полезных свойств). 2) Процесс разложения материалов на более простые, обычно химические, составляющие под действием живых организмов (например, минерализация органических отходов). 3) Экологический термин, означает обезвреживание отходов и ксенобиотиков применительно к охране окружающей среды.


Биоиммуносорбентный анализ. Анализ с использованием биологически активного лиганда на твердой фазе.


Биоиндикаторы (от греч. bios и лат. indico — указываю, определяю). Организмы или сообщества организмов, присутствие, количество или особенности развития которых служат показателями естественных процессов, условий или антропогенных изменений среды обитания. Многие организмы весьма чувствительны и избирательны по отношению к различным факторам среды обитания (химическому составу почвы, вод, атмосферы, климатическим и погодным условиям, присутствию других организмов и т. п.) и могут существовать только в определенных, часто узких границах изменения этих факторов. Например, скопление морских рыбоядных птиц свидетельствует о подходе косяков рыб. Специфические организмы планктона и бентоса указывают на происхождение водных масс и течений, характеризуют определенные параметры среды обитания (соленость, температура и т. п.). Лишайники и некоторые хвойные деревья являются биоиндикаторами чистоты воздуха. Растения-биоиндикаторы могут служить показателями кислотности, засоленности почв. Ряд почвенных микроорганизмов и индикаторные растения служат биоиндикаторами при поиске различных полезных ископаемых. По комплексам почвенных животных можно определять типы почв и их изменение под влиянием хозяйственной деятельности человека. Локальные внутривидовые группировки у многих животных, например у рыб, характеризуются в зависимости от района обитания различными комплексами паразитов-индикаторов. При помощи биоиндикаторов устанавливают содержание в субстрате витаминов, антибиотиков, гормонов и других биологически активных веществ, а также определяют интенсивность различных химических (рН, содержание солей и др.) и физических (радиоактивность и др.) факторов среды. Важный аспект применения биоиндикаторов — оценка с их помощью степени загрязнения окружающей среды, постоянный контроль (мониторинг) ее качества и изменений. Обычно растения-биоиндикаторы используются для оценки загрязнения воздуха, а животные-биоиндикаторы — воды. Разработаны различные методы биоиндикации — фитологическое картирование (картирование числа видов и степени проективного покрытия и сравнение с эталоном), экспозиция в загрязненной среде растений-биоиндикаторов, выращенных в нормальных условиях, анализ видимых повреждений организмов, содержание загрязняющих веществ в организмах в случае биоаккумуляции. Обычно биоиндикаторы используются при крупномасштабных исследованиях загрязнений окружающей среды.


Биоинформатика. Новое направление исследований, использующее математические и алгоритмические методы для решения молекулярно-биологических задач.


Биокатализаторы. Вещества, присутствие которых ускоряет (положительный катализ) или тормозит (отрицательный катализ) свойственные живой материи химические процессы. Пример биокатализаторов — ферменты.


Биолиты (от греч. bios — жизнь и lithos — камень). Горные породы или минералы, имеющие биогенное происхождение, т. е. состоящие из остатков животных и растений, а также продуктов их жизнедеятельности.


Биологические мембраны. Активные молекулярные комплексы, разделяющие внутриклеточные органоиды и клетки. Биологические мембраны всегда находятся на границе двух сред, имеющих различные свойства. Основными компонентами биологических мембран являются липиды, белки и гетерогенные молекулы (гликопротеиды, гликолипиды и др.). Основные функции биологических мембран — барьерная, транспортная, регуляторная, каталитическая. Одно из важнейших свойств биологических мембран — избирательная проницаемость, что является основой для создания ионных, химических и электрических градиентов.


Биологический круговорот. Малый круговорот вещества и энергии — обмен веществ и энергии между растениями и почвами, совершающийся обычно в пределах одного биогеоценоза. Включает круговороты различных элементов, усваиваемых растениями из почвы: или из воздуха. Наибольшее значение имеет биологический круговорот углерода, азота и ряда других веществ. Биологический круговорот: для еловых насаждений — кальциево-азотный; для широколиственных лесов — азотно-кальциевый; для злаковых лугов — азотно-калиевый; для галофитной растительности — хлоридно-натриевый (см. Круговорот биологический). Бесчисленные биологические круговороты, накладываясь друг на друга, образуют большой круговорот — обмен вещества и энергии между сушей и океаном.


Биомасса. Суммарная масса всех веществ животного и растительного происхождения в составе как живых, так и неживых организмов, оцениваемая с точки зрения запаса питательных веществ и энергии. Выражается на единицу поверхности суши (обычно на 1 м2) или объема места обитания (1 м3 воды); чаще всего выражают в массе сырого или сухого вещества (г/м2, кг/га, г/м3 и т. д.). Биомасса растений называется фитомассой, биомасса животных — зоомассой. Общая биомасса живых организмов биосферы оценивается в от 1,8 × 1012 т до 2,4 × 1012 т сухого вещества. По другим оценкам биомасса всех живых организмов Земли составляет от 1,8 × 1018 до 3 × 1018 т, причем около 90% приходится на биомассу наземных растений. К биомассе относят все живые, а иногда и мертвые части организмов; они прекращают быть биомассой, становясь лесной подстилкой, гумусом, торфом. Исследования биомассы позволяют оценивать продуктивность участков суши или акватории и т. д. Величина биомассы зависит от видового состава организмов, от условий их обитания и сезона года.


Биополимеры. Высокомолекулярные органические соединения, макромолекулы которых состоят из большого числа повторяющихся звеньев — мономеров (белки, нуклеиновые кислоты, полисахариды и их производные). Мономерами для них служат соответственно аминокислоты, нуклеотиды и моносахариды. Биополимеры составляют около 90% сухой массы клетки. При этом у животных количественно преобладают белки, у растений — полисахариды. Например, в клетке бактерий содержится около 3000 видов белков и 1000 нуклеиновых кислот, а у человека число белков оценивают в 5 миллионов. Все они являются структурной основой живых организмов и играют определяющую роль в процессах жизнедеятельности. Структурную основу биополимеров составляют линейные (белки, нуклеиновые кислоты, целлюлоза) либо разветвленные (гликоген) цепи. Благодаря такой структуре они характеризуются рядом замечательных свойств. Во-первых, их взаимодействие отличается кооперативностью, т. е. тесной взаимосвязанностью всех функциональных групп. Это означает, что взаимодействие одних групп биополимера изменяет характер взаимодействия других его групп. Пример такого кооперативного взаимодействия — связывание молекулы кислорода белком эритроцитов крови гемоглобином. Во-вторых, биополимеры способны образовывать так называемые интерполимерные комплексы, которые могут возникнуть между отдельными частями молекулы и между разными молекулами. Благодаря образованию комплексов и другим свойствам биополимеров осуществляется биосинтез белков, нуклеиновых кислот, регуляция обмена веществ, реакции иммунитета и другие важнейшие биологические процессы. Биополимеры являются структурной основой живых организмов, выполняя важную роль в процессе жизнедеятельности.


Биосфера. 1) Область активной жизни, охватывающая нижнюю часть атмосферы, гидросферу и верхнюю часть литосферы. В биосфере живые организмы (живое вещество) и среда их обитания органически связаны и взаимодействуют друг с другом, образуя целостную динамическую систему. Термин введен Э. Зюссом (1875). Учение о биосфере как об активной оболочке Земли, в которой совокупная деятельность живых организмов (в том числе человека) проявляется как геохимический фактор планетарного масштаба и значения, создано В. И. Вернадским (1926). 2) Сложная многокомпонентная общепланетарная термодинамическая открытая саморегулирующаяся система живого вещества и неживой материи, которая аккумулирует и перераспределяет состав и динамику земной коры, почвенного покрова, атмосферы и гидросферы. Основными компонентами биосферы являются: живое вещество (совокупность живых организмов), биогенное вещество (продукты, созданные живым веществом, например, угли, торф, сапропели, гумус) и биокосное вещество (продукты, образованные в результате взаимодействия живой и неживой природы: почвы, илы, осадочные породы). К важнейшим свойствам биосферы относят разнообразие живых организмов, асимметричность распределения живого вещества, а также пластичность и резистентность. Толщина биосферы составляет 40 км. Основной элементарной ячейкой биосферы является биогеоценоз. 3) По В. А. Ковде биосфера — сложная многокомпонентная общепланетарная термодинамически открытая саморегулирующаяся система.


Биотехния. Совокупность научных закономерностей и технологических приемов, направленная на увеличение количества полезных животных и улучшение их продуктивных свойств.


Биотехнология. Раздел технологии, использующий биологические системы, живые организмы или их производные с целью создания и модификации продуктов или процессов различного назначения на практике.


Биохимия (биологическая, или физиологическая химия). Наука о химическом составе живых клеток и организмов и о химических процессах, лежащих в основе их жизнедеятельности.


Биоциды. Вещества, уничтожающие живые организмы. Включают пестициды (бактерициды, фунгициды, инсектициды, гербициды, зооциды и др.), антисептические, дезинфекционные и консервирующие средства.


Биофильные химические элементы. В почвах — химические элементы, связанные с живым веществом почв. Представлены в основном кислородом, углеродом, водородом, кальцием, азотом, калием, кремнекислотой, магнием, фосфором, серой и в сумме составляют 99,98% сырой массы живого вещества.


Биоэлектрохимический иммуноанализ. Анализ с использованием биоэлектрода на основе иммобилизованного фермента и измерением динамики электрохимической активности.


Благородные газы. Инертные газы, или редкие газы: химические элементы VIII группы периодической системы: гелий (Не), неон (Ne), аргон (Аr), криптон (Кr), ксенон (Хе), радон (Rn).


Благородные металлы. Драгоценные металлы: золото (Au), серебро (Ag), платина (Pt) и металлы платиновой группы: иридий (Ir), осмий (Os), палладий (Pd), родий (Rh), рутений (Ru).


Боденштейна метод стационарных концентраций. В открытых системах часто наблюдается стационарный режим, когда в ходе химической реакции концентрации всех промежуточных частиц постоянны и не изменяются во времени. В таком случае скорости образования и расхода всех промежуточных частиц одинаковы:



С учетом данного условия Боденштейн предложил метод расчета концентрации промежуточных частиц и скорости химической реакции через концентрации реагентов.


Броуновское движение. Хаотическое перемещение частиц дисперсной фазы под воздействием теплового движения молекул дисперсионной среды. Это происходит как вследствие неодинакового числа ударов с разных сторон частицы, так и вследствие различной энергии молекул, сталкивающихся с частицей. В результате в зависимости от размеров частица приобретает колебательное, вращательное или поступательное движение.


Бурые угли. Класс твердых горючих ископаемых гумусовой природы невысокой степени углефикации; переходная форма от торфа к каменным углям.


Буфер универсальный. Смесь нескольких буферов, которую можно использовать в широких пределах рН.


Буфер электродный. Жидкость для электрофоретических ячеек, ванн и т. п., в которую погружены электроды.


Буферный раствор. Смесь слабой кислоты и ее гидролитически щелочной соли или слабого основания и его гидролитически кислой соли. Величина рН данных растворов мало изменяется при добавлении небольших количеств сильной кислоты или основания, при разбавлении или концентрировании. Буферные растворы широко применяются в большинстве химических, генетических и цитогистологических методик, имеющих дело с жидкими реактивами. Примеры: Трис-Б., фосфатный буфер (рН = 6,8: 4,05 г КН2РО4 и 4,25 г Na2HPО4 на 1 л воды; варьированием концентраций этих двух солей рН может обеспечиваться в широких пределах), буфер Мак-Иллвейна (рН = 7,0: 0,63 г лимонной кислоты, 6,19 г Na2HPО4 на 0,5 л воды); буфер Соренсена (рН = 6,5: 5,6 г КН2РО4 и 2,64 г Na2HPО4 на 1 л воды; рН = 6,8: 6,74 КН2РО4 и 7,08 г Na2HPО4 на 1 л воды); буфер Эрле (рН = 8,5–9,0: 0,2 г СаС12, 0,4 г KCl, 0,2 г MgSО4 × 7Н2О, 6,8 г NaCl, 2,2 г NaHCO3, 0,14 г NaH2PO4 × Н2O на 1 л воды). Применяют в иммуноферментном анализе. Основные характеристики буферных растворов: ионная сила, рН, буферная емкость. При увеличении ионной силы буфера возрастает сила тока и количество выделяемого тепла. При использовании буферных систем с низкой ионной силой общая сила тока и выделение тепла уменьшается, но диффузия (размыв образца) возрастает. Поэтому используют промежуточные концентрации в пределах от 0,01 до 0,3 М. Важно учитывать рН буфера, так как в зависимости от его показателя изменяется величина и направление движения исследуемых соединений. Последний параметр, характеризующий буферные растворы, — это буферная емкость. Она определяется большей или меньшей способностью нейтрализовать продукты электролиза, образующиеся в процессе электрофореза. Буферные системы применяют в зависимости от изучаемых белковых маркеров и подбирают эмпирически. Для расчета рН буферных растворов используют уравнения:


pH = pKa + lg[соль] – lg[кислота]


или


рH = pKa + lg[основание] – lg[соль],


где Ка — константа кислоты или основания.


Буферная емкость. Это интервал, в котором проявляется буферное свойство раствора. Она определяется количеством сильной кислоты или основания (кмоль), которое необходимо добавить в 1 м3 буферного раствора, чтобы сместить рH на единицу. Буферную емкость (Б) рассчитывают по формуле:



где ∆рН — изменение рН при титровании буфера кислотой или щелочью, наиболее близкое к 1 (∆рН = рН1 – рН0).


Буферная емкость экосистемы. Способность экосистемы противостоять загрязнению; количество загрязнителя, которое экосистема может поглотить без заметных отрицательных последствий для себя. Это понятие иногда используют при оценке отдельных компонентов ландшафтов; в частности, буферность почвы — ее способность сохранять кислотную реакцию (рН), особенно в связи с кислотными дождями. Буферная емкость природных вод — способность воды к самоочищению от антропогенных загрязнителей и т. д.


Буферность. Устойчивость системы к изменениям, вызываемым внешними факторами.


Буферность почвы. Способность жидкой и твердой фаз почв противостоять изменению реакции среды (рН) при прибавлении сильной кислоты (кислотное плечо, кислый интервал буферности почвы) или щелочи (щелочное плечо, щелочный интервал буферности почвы). Выражается количеством кислоты или щелочи (в эквивалентах), смещающим рН на единицу, или отрезками площадей, ограниченных кривыми титрования без буферной системы (кварцевый песок) и почвы.


Валентность. Определяется числом химических связей, которыми данный атом соединен с другими атомами. Пример: в молекуле SO2 (O=S=O) валентность серы равна 4, валентность кислорода — 4. В молекуле метана СН4 углерод четырехвалентен, а водород одновалентен. Валентность может не совпадать по абсолютной величине со степенью окисления атома. Например, в молекуле HNO3 степень окисления атома азота равна +5, а валентность равна 4. В молекуле пероксида водорода степень окисления кислорода равна –1, а валентность — 2. Валентность определяют для химических соединений с ковалентными или донорно-акцепторными связями, а в соединениях с ионной связью рассматривают только степень окисления атомов, образующих молекулу.


Вариантность (число степеней свободы системы). Число интенсивных термодинамических параметров состояния, которые можно изменять независимо друг от друга, не изменяя природу и число фаз, находящихся в равновесии.


Вещества гумусовые. Сложный динамический комплекс органических соединений, образовавшихся при разложении и гумификации органических остатков в почве. Основная масса гумуса (85–90%) представлена его специфической частью — собственно гумусовыми веществами. Они состоят из ряда высокомолекулярных азотсодержащих органических соединений циклического строения, имеющих кислотный характер. Большая их часть находится в различных формах связи с минеральной частью почв. Основными группами гумусовых веществ являются: 1) гуминовые кислоты; 2) фульвокислоты; 3) гумины. Гуминовые кислоты — сложные высокомолекулярные азотсодержащие органические кислоты. Они формируются в почвах в аэробных условиях при участии бактерий и травянистой растительности (например: в черноземах). Гуминовые кислоты характеризуются высоким содержанием углерода и кислорода, гетерогенны, полидисперсны, от коричневого до черного цвета, хорошо растворимы в щелочах, нерастворимы в воде и кислотах и обладают большой поглотительной способностью. Взаимодействуют с минеральной частью почв через ионы водорода и фенолгидроксильные группы, образуют органо-минеральные соединения — гуматы (см. Гуминовые кислоты и гуматы). Гуматы Na, К, NН4 хорошо растворимы в воде и легко вымываются из почв (солонцовые почвы); Са и Mg, R2O3, Al(OH)3, Fe (OH)3 — соединения, прочно удерживаемые в почве. Гуматы Са и Mg создают водопрочную структуру (черноземы, дерново-карбонатные, лугово-черноземные почвы). Как гуминовые кислоты, так и их органо-минеральные соединения богаты питательными элементами. Фульвокислоты — сложные высокомолекулярные азотсодержащие кислоты светло-желтого или оранжевого цвета, хорошо растворимые в воде, кислотах и щелочах. Соединяются с минеральной частью почв, образуют фульваты (крелаты), сильно разрушающие минеральную часть почв (подзолистый процесс) вследствие хорошей растворимости в воде практически при любой реакции среды (см. Фульвокислоты). Гумины — сложный комплекс, в состав которого входят гуминовые кислоты и фульвокислоты, находящиеся в прочной связи с минеральной частью почв или же между собой. При переходе от северных подзолистых почв к черноземам содержание гуминовых кислот нарастает, фульвокислот — падает, состав гуминовых кислот меняется в сторону увеличения в них С и N. Количественный и качественный состав гумусовых веществ зависит от поступающей биомассы, условий водно-воздушного и теплового режимов, состава и свойств почв. Соотношение кислот дает качественную характеристику почвам (типы гумусовых веществ), возможность судить об условиях гумификации и свойствах почв. Гумусовые кислоты в разных почвах различаются по свойствам: в подзолистых и красноземных почвах они светло-бурые и мало конденсированы; в черноземах — черные и сильно конденсированы. Гумусовые вещества, являясь наиболее ценной частью почв, имеют огромное значение для почвообразования, плодородия почв и питания растений. Гумусовые вещества участвуют в первом этапе почвообразования — биологическом выветривании, способствующим формированию почвенного профиля по зонам (зональные процессы почвообразования). Гумусовые вещества являются запасным фондом питательных веществ, так как содержат азот и зольные элементы (Са, К, S, Р и др.), освобождаемые при разложении гумуса. Гумусовые вещества, благодаря наличию функциональных групп, обладают большой поглотительной способностью по отношению ко всем катионам. Наряду с Са и Mg и R2O3 они образуют неподвижные, не вымываемые из почв устойчивые соединения. Гумусовые кислоты обладают клеящими свойствами, связывают частицы, образуя агрегаты, играют важную роль в создании почвенной структуры и связанных с ней физических, физико-механических и других свойств и режимов почв. Водорастворимые гумусовые вещества, поглощаясь растениями, активизируют окислительно-восстановительные процессы в почвах, стимулируют рост и развитие растений. Забота о сохранении гумуса в практике сельскохозяйственного производства — важная задача агронома. Основные мероприятия по регулированию количества и качества гумуса — систематическое внесение органических удобрений, применение зеленых удобрений, травосеяние (бобовые), известкование кислых и гипсование щелочных почв, осушение, орошение, рациональная обработка почв и система применения удобрений, получение высоких урожаев.


Вещества зольные (элементы зольные). Вещества, составляющие золу после сжигания растительных остатков. Содержание золы в древесных растениях и мхах (сфагновых) 1–2%, листья и кора деревьев содержат 4–6% золы, а травянистые растения — 10–12% (до 15%). Основную массу золы составляют Ca, Mg, K, Na, Si, P, S, Fe, Al, Mn, Cl. В малых количествах встречаются I, Zn, B, F и другие из группы микроэлементов. Зольные элементы входят в состав различных соединений. Так, K входит в состав протоплазмы, а частично, в виде солей различных органических кислот, в состав клеточного сока. Ca образует кристаллы щавелевокислой соли, входит в состав хлорофилла, фосфор и сера — в состав белков и т. д.


Вещество органическое. 1) Органическая часть почвы, представленная живыми организмами (биофаза), а также неразложившимися органическими остатками и гумусовыми веществами. Последние делятся на неспецифические и специфические гумусовые вещества. Биофаза, или живое вещество почв — совокупность живых организмов: высших и низших растений, животных и микроорганизмов. Органические остатки — органические вещества, ткани растений и животных, частично сохраняющие исходную форму и строение. Гумусовые вещества неспецифической (индивидуальной) природы представляют индивидуальные органические соединения и промежуточные продукты разложения органических остатков (белки, аминокислоты, углеводы, моно- и полисахара и др.; лигнин, липиды, смола, дубильные вещества, спирты и др.). Они составляют 10–15% от общего содержания гумуса или перегноя. Скорость разложения и размеры накопления органических веществ зависят от состава исходных органических веществ, влажности, аэрации, температуры, состава материнских пород и характера почвообразовательного процесса. Запасы гумуса зависят от количества и качества растительности и влажности по зонам. 2) Вещество органического, преимущественно растительного происхождения, образующееся из естественной или антропогенной флоры и проникающее в поверхностные горизонты почвы. Источник гумуса. Выделяют следующие классы почвенного органического вещества (ОВ) (Dommergues et Mangenot):


— собственно свежее органическое вещество состоит из мертвых листьев, веток, пожнивных остатков, мертвых корней, мертвых микробных клеток, трупов животных;


— свободное, или негумифицированное органическое вещество — легкая фракция с повышенным отношением C:N, легко подвергающаяся биодеградации; может быть отделена от глины с помощью физических методов; в лесных почвах эта фракция практически идентична разлагающейся подстилке.


Но границы между различными классами неизбежно произвольны, поскольку существует множество переходных типов органического вещества.


Вещества простые. Простые вещества состоят из атомов одного химического элемента. Примеры: S — сера, Fe — железо, F2 — фтор, O2 — кислород, O3 — озон, Cl2 — хлор, Н2 — водород и др.


Вещества сложные. Сложные вещества состоят из атомов разных химических элементов: Н2О — вода, H2SO4 — серная кислота, СН4 — метан, CH3COOH — уксусная кислота, ZnCl2 — хлорид цинка.


Взаимодействие


— дипольное. Дипольное, или ориентационное взаимодействие вызвано ориентированием (притяжением плюса одной к минусу другой) молекул с дипольной структурой при их сближении;


— индукционное. Взаимодействие возникает, когда обладающая диполем молекула сближается с нейтральной молекулой, у которой имеются заряды, равномерно распределенные по молекуле. Под влиянием дипольной молекулы у нейтральной молекулы происходит перераспределение заряда и индуцируется дипольный момент;


— кислотно-основное. Образование донорно-акцепторной связи в результате взаимодействия кислоты (акцептора электронных пар) и основания (донора электронных пар);


— Ван-дер-Ваальсово (Ван-дер-Ваальсовы силы). Слабое, нековалентное межмолекулярное взаимодействие, возникающее за счет взаимодействия дипольных (мультипольных) моментов молекул и поляризации их электронных оболочек.


Вискеры. Нитевидные кристаллы диаметром от 1 до 10 мкм и отношением длины к диаметру больше 1000, являются одним из наиболее перспективных кристаллических материалов с уникальным комплексом физико-химических свойств.


Виcкозиметр. Прибор для определения вязкости жидкостей.


Вискозиметрия. Совокупность методов измерения вязкости жидкостей и газов. Вискозиметрия, используемая для определения значения вязкости, позволяет оценить такие важные параметры материалов в растворе или расплаве, как, например, степень диспергирования наполнителя, существование полимерных связующих между его частицами и т. д.


Влажность воздуха. Содержание водяного пара в воздухе, характеризуемое следующими параметрами: упругостью водяного пара, абсолютной влажностью, удельной влажностью, отношением смеси, относительной влажностью, дефицитом влажности, точкой росы.


Влажность почвы. Величина, характеризующая содержание в почве влаги, выражается в процентах от массы сухой почвы (весовая влажность почвы), в процентах от объема (объемная влажность почвы), в процентах от содержания влаги, соответствующей тому или иному виду влагоемкости, чаще полной или наименьшей (относительная влажность почвы). Основной показатель, используемый в определении различных категорий влаги, влагообеспеченности растений и других целей. Содержание воды в почве выражается часто в миллиметрах водяного столба, что удобно для сравнения содержания влаги в почве с количеством выпадающих осадков. От взаимоотношения влаги и воздуха в почве зависит в значительной степени рост и развитие растений.


Внешняя среда (окружающая среда). Силы и явления природы, ее вещество и пространство, растения и животные, любая деятельность человека вне рассматриваемого объекта или субъекта. Может непосредственно не контактировать с ним. Все условия живой и неживой природы, при которых существует организм и которые прямо или косвенно влияют на состояние, развитие и размножение как отдельных организмов, так и популяций. Биотические факторы — животный и растительный мир в той или иной местности. Абиотические факторы — неорганический мир (особенности рельефа, почвы и водной среды, условия освещения, влажность воздуха, температурный и кислородный режимы и т. д.).


Внутренняя энергия. Обозначается как E или U. Складывается из кинетической энергии хаотического движения молекул, потенциальной энергии взаимодействия между ними и внутримолекулярной энергии. Внутренняя энергия является функцией состояния системы, т. е., когда система оказывается в данном состоянии, то ее внутренняя энергия принимает присущее этому состоянию значение независимо от предыстории системы. Изменение внутренней энергии при переходе из одного состояния в другое равно разности между ее значениями в конечном и начальном состояниях, независимо от пути, по которому совершался переход. Внутреннюю энергию тела нельзя измерить напрямую. Можно определить только изменение внутренней энергии:


∆U = Q – A,


где Q — теплота (Дж), А — работа (Дж).


Вода. Химическое вещество состава Н2О. Самое распространенное химическое соединение на нашей планете, уникальный растворитель. Молекула воды имеет симметричную нелинейную структуру. Связь Н‒О ковалентная полярная, угол Н‒О‒Н равен 104,5°, между молекулами воды существует водородная связь. Вода обладает целым рядом аномальных физических свойств, что объясняется в первую очередь наличием водородных связей. Физические свойства: Ткип. = 100 °С, Тпл. = 0 °С при атмосферном давлении. При комнатной температуре вода — жидкость без вкуса, цвета и запаха, прозрачная, плотностью 1 г/см3. Чистая вода является слабым электролитом. Различают ионное произведение воды: произведение концентраций ионов водорода и гидроксила не только в воде, но и в любом водном растворе есть величина постоянная при постоянной температуре. Пример: при 22 °С концентрация ионов водорода в чистой воде равна концентрации гидроксил-ионов и равна соответственно 10–7 г-ион на литр. Следовательно, можно записать: СН × СОН = 10–7 × 10–7 = 10–14.


Водородная связь. Вторая, побочная валентность атома водорода, которая проявляется по отношению к сильно отрицательным атомам, если основной валентностью он связан с атомом, наиболее сильно отрицательным в данной молекуле.


Водородный показатель рН. Величина, характеризующая концентрацию (активность) ионов водорода в растворе, численно равна отрицательному десятичному логарифму концентрации (активности) ионов водорода, выраженной в моль на литр. В разбавленных водных растворах 0 ≤ рН ≤ 14. В кислых растворах 0 ≤ рН ≤ 7. В нейтральных растворах рН = 7. В щелочных растворах 7 ≤ рН ≤ 14.


Для расчета рН в разбавленных растворах различных классов соединений используют следующие уравнения:


Сильные кислоты: рН = – lgaH+.


Сильные основания: pH = 14 – pOH


Слабые кислоты: pH = ½(pKк – lgC)


Слабые основания: pH = 14 – ½pKо + ½lgC


Гидролитически кислые соли: pH = 7 – ½pKосн – ½lgC


Гидролитически щелочные соли: pH = 7 + ½pKкисл + ½lgC


Буферные растворы: pH = pKa + lg[соль] – lg[кислота]
рH = pKa + lg[основание] – lg[соль].


Возгонка (сублимация). Превращение твердого вещества в газообразное без процесса плавления — например, возгонка йода.


Воспроизводимость. Повторяемость результатов анализа одного и того же элемента (вещества), полученная по данным нескольких экспериментов. Воспроизводимость характеризует рассеяние единичных результатов относительно среднего, т. е. степень близости друг к другу результатов единичных определений. Под воспроизводимостью также понимают рассеяние результатов химического анализа, полученных в разных лабораториях, в разное время и т. д. Воспроизводимость зависит от подготовки пробы для анализа.


Восстановитель. Атом, молекула или ион, который отдает электроны в окислительно-восстановительных реакциях. Примеры: Zn – 2e– = Zn2+, Zn — восстановитель; 2Сl– – 2е– = Сl2, Сl– — восстановитель.


Восстановление. Процесс присоединения электронов атомом, молекулой или ионом. Наблюдается в окислительно-восстановительных реакциях. Примеры: S + 2e– = S2– — восстановление серы до сульфида; MnO4– + 8H+ + 5e– = Mn2+ + 4Н2О — восстановление марганца от степени окисления +7 до степени окисления +2.


Время релаксации ионной атмосферы. Время, за которое ионная атмосфера образуется на новом месте и исчезает на старом.


Второе начало термодинамики (второй закон термодинамики)


— формулировка Клаузиуса. Теплота не может самопроизвольно переходить от менее нагретого тела к более нагретому.


— формулировка Кельвина и Планка. Невозможно построить периодически действующую машину, единственным результатом действия которой было бы совершение механической работы за счет охлаждения теплового резервуара.


Математическое выражение второго начала термодинамики:



где Qобр или Qнеобр — полное количество тепловой энергии, выделенной или поглощенной системой; S — энтропия.


Высаливание. Выпадение растворенного высокомолекулярного соединения в осадок при определенной концентрации добавляемого электролита.


Высокомолекулярные соединения (ВМС). Соединения органической природы, молекулярная масса которых от нескольких тысяч до нескольких миллионов. ВМС образуют при смешивании с растворителем молекулярные растворы, подобные обычным растворам низкомолекулярных веществ, но с очень длинными цепными молекулами. Такие растворы относятся к однофазным (гомогенным) системам. Как и растворы сахара или мочевины, они образуются самопроизвольно, потому что сам процесс растворения идет с уменьшением свободной энергии и не требует наличия стабилизатора. Растворы ВМС оказываются вполне устойчивыми, независимо от длительности существования. Они являются молекулярными термодинамически равновесными системами, и поэтому обратимы. Вследствие наличия длинных молекулярных цепей ВМС отличаются по ряду свойств от растворов низкомолекулярных веществ и проявляют свойства высокодисперсных гетерогенных систем. К ВМС относятся натуральный и искусственный шелк, шерсть, хлопок, лен, синтетические смолы, пластические массы, натуральный и синтетический каучуки, синтетические волокна — капрон, нитрон, лавсан и др., а также белковые вещества, крахмал, целлюлоза, ее производные и многие другие.


Высокопроводящие материалы. Наноматериалы, которые разрабатываются в настоящее время с использованием нанотехнологий. Например, электрические кабели, сделанные из нанотрубок, при комнатной температуре будут иметь электропроводность на два порядка выше, чем медные кабели.


Вязкость. Внутреннее трение жидкости, возникающее при истечении одного слоя относительно другого. Единицы вязкости: в системе СИ — паскаль × секунда (Па × с); в системе СГС— пуаз (П). 1 Па × с = 10 П.


Вязкость относительная — отношение вязкости раствора полимера ηр к вязкости растворителя η0:



Вязкость удельная отражает возрастание относительной вязкости по сравнению с единицей:


ηуд = ηотн – 1


Вязкость приведенная учитывает влияние концентрации раствора на вязкость, т. е. оценивает, насколько велика удельная вязкость, отнесенная к единице концентрации растворенного вещества:



Вязкость характеристическая, или предельное число вязкости — экстраполяция зависимости ηуд /с от концентрации раствора с:



Вязкость структурная (зависит от давления) является результатом образования в жидкости внутренней сетчатой структуры, способной связывать в ячейках сетки большое количество жидкости.


Газ идеальный. Предельное состояние реальных газов при бесконечно малом давлении.


Газ Кнудсена. Газ, для которого в процессе диффузионного переноса число межмолекулярных столкновений меньше, чем со стенками капилляра, при условии, что диаметр капилляра (d) существенно меньше длины свободного пробега (d << λ) молекул (λ).


Газовая хроматография. Хроматографический метод разделения соединений, при котором используется инертный газ.


Газовые электроды. Относятся к электродам 1-го рода. Состоят из металла, не участвующего в электродном процессе, но адсорбирующего газ. Участниками электродного процесса являются адсорбированный газ и соответствующие ионы раствора. Пример — водородный электрод, где платиновая пластина находится в растворе кислоты. Через кислоту пробулькивается газообразный водород, и электродная реакция имеет вид:


Н+ + е– ↔1/2 Н2.


Газообмен. Совокупность процессов обмена газов (О2, СО2, пары Н2О и др.) между организмом и окружающей средой; состоит в потреблении организмом кислорода, выделении углекислого и других газов, паров воды. У растений осуществляется через специальные органы — устьица, у простейших — через всю поверхность тела, у животных — через органы дыхания. Газообмен является первым этапом дыхания.


Гальванический элемент (цепь). Устройство, в котором энергия химических реакций, протекающих на электродах, преобразуется в электрический ток. Различают следующие цепи:


— концентрационная. Электрическая энергия возникает за счет разницы концентраций растворов, в которые опущен один и тот же металл. Пример:


Сu | Cu2+ (c1) | KCl | Cu2+ (c2)|Cu


— окислительно-восстановительная. Электрическая энергия возникает за счет реакций окисления — восстановления, которые могут протекать в электродном растворе. Пример:


Pt |Fe3+,Fe2+| 2H+ |H2,


где реакция окисления — восстановления имеет вид:


Fe2+ – e = Fe3+


— химическая. Электрическая энергия возникает за счет химического окислительно-восстановительного процесса, протекающего на электродах. Пример:


Cu | Cu2+ (c1) | KCl | Zn2+ (c2) |Zn.


Гальванопластика. Метод основан на использовании электролиза растворов солей, при котором металл соли выделяется на катоде в виде слоя, имеющего кристаллическое строение. Сущность гальванопластики заключается в получении металлических копий с различных предметов. Изобрел гальванопластику Б. С. Якоби (1801–1874).


Гальваностегия. Метод заключается в осаждении при посредстве электричества одного металла на поверхность другого металла с целью защитить последний от коррозии или повысить твердость металлических изделий. Для защиты металлов от коррозии применяют никелирование, хромирование, кадмирование, серебрение и т. д. Изобрел гальваностегию Б. С. Якоби.


Гамма-лучи (гамма-излучение). Электромагнитное излучение ультракоротких волн, испускаемое претерпевающими радиоактивный распад атомными ядрами или имеющее место при аннигиляции. Гамма-лучи обладают мощным мутагенным и иным повреждающим действием (лучевая болезнь и т. п.).


Гели. Дисперсные системы, которые характеризуются структурой, придающей им механические свойства твердых тел. Образуются при коагуляции золей, при высушивании необратимо разрушаются.


Гель. 1) Осадок высокомолекулярного вещества, полученный из его коллоидного раствора (золя). В виде геля осаждаются белки в изоэлектрической точке или при добавлении к растворам белков водоотнимающих средств (спирт, нейтральные соли). Гель легко перевести в коллоидный раствор. 2) Полуплотная смесь, состоящая из полимерного компонента и жидкости, используемая для разделения макромолекул ДНК (агарозный гель), РНК (агарозный полиакриламидный гель) или белков (полиакриламидный, или крахмальный гель). 3) Студнеобразная система, обладающая плотностью и эластичностью. Образуется в результате разбухания в горячей воде мицелл вещества, например, агара, желатины, алюминия гидроксида и др. Используется в реакции преципитации, электрофорезе, иммуноэлектрофорезе, приготовлении плотных питательных сред.


Гель гидроксида алюминия. Используют как носитель в колоночной или тонкослойной распределительной хроматографии.


Гель денатурирующий. Гель, в котором нарушается нативная структура биополимеров.


Гель концентрирующий. Верхний слой двухслойного полиакриламидного геля, состав и структура которого позволяют сконцентрировать образцы для лучшего разделения их в слое разделяющего геля методом электрофореза.


Гель неденатурирующий. Гель, в котором сохраняется нативная структура биополимеров.


Гель прерывистый. Двухслойный гель, состоящий из концентрирующего и делящего слоев.


Гель-сканер. Прибор, предназначенный для индикации распределения биологических макромолекул в плоских ПААГ-пластинах, а также агарозных пластинах, при анализе сложных смесей методом электрофореза.


Гель-фильтрация. Разделение молекул по размерам в гелях с заданным диаметром пор. Метод очистки веществ путем фильтрации через колонки различной величины, наполненные адсорбентом, выполняющим функцию молекулярного сита. Используется при разделении различных классов антител, ферментов, белков, отличающихся по молекулярному весу. Гель-фильтрацию проводят через различные марки сефадексов и других полимерных соединений. Матрица представляет собой множество простых частиц, между которыми находится элюат. При нанесении исследуемого материала на верхнюю часть колонки мелкие частицы или молекулы задерживаются некоторое время в порах адсорбента и элюируются позднее. В первых порциях элюата обнаруживают молекулы, имеющие наибольший молекулярный вес и размеры. Таким образом, гель-фильтрация — это разделение смеси в порядке уменьшения молекулярного веса и размеров.


Гель-электрофорез в градиенте пульсирующего поля. Вариант метода электрофореза в агарозном геле. Характеризуется чередующимися электрическими импульсами полей, расположенных под тупым углом друг к другу. Продолжительность импульсов от 1 до 90 с. Метод используется для высокоразрешающего разделения макромолекул, в частности, фрагментов ДНК (или целых хромосом, например, дрожжей) размером от 100 до 2000 и более тысяч пар нуклеотидов. Метод предложен Д. Шварцем и Ч. Кантором (1984).


Гемадсорбция. Процесс адсорбции эритроцитов на поверхности инфицированных вирусами клеток. Наблюдается в основном у вирусов, вирионы которых после образования выходят из клетки путем почкования, например, у орто- и парамиксовирусов. Проводят для индикации вируса на чувствительной к нему культуре клеток. Наблюдают различия в типе адсорбции (диффузный, очаговый), в виде сорбируемых эритроцитов (человека, обезьян, морской свинки и др.), в температуре, при которой протекает реакция (37 °С, 0 °С), наличии элюции (есть, нет). Гемадсорбция может быть заторможена предварительной инкубацией инфицированной вирусом культуры клеток. Реакцию торможения гемадсорбции используют для идентификации вирусов. 1) Способность культур клеток, зараженных вирусами (ортомиксовирусами, парамиксовирусами, тогавирусами), адсорбировать эритроциты различных животных, что объясняется включением в плазматическую мембрану синтезирующихся вирусных белков. 2) Способность клеток, зараженных некоторыми вирусами (гемагглютинирующими), фиксировать на своей поверхности эритроциты. 3) Явление, используемое для диагностики некоторых инфекционных болезней.


Генная инженерия. Направление биотехнологии, разрабатывающее генно-инженерные клеточные методы и технологии создания трансгенных растений как сырья для биотоплива и биодизеля, а также трансгенных пород животных и птицы. В ее основе лежат специальные технологии на нано- и пикоразмерном уровне (10–12 м).


Геномика. Новое направление генетики, изучающее геном, индивидуальные гены на молекулярном уровне, структуру (сиквенс) гена, его экспрессию и механизмы регуляции активности, а также клонирование гена и использование его в генно-инженерных целях. Одной из задач структурной геномики является построение детальных генетических и физиологических карт организмов. Основой для построения этих карт служат молекулярно-генетические маркеры. Поэтому разрешающая способность карт определяется количеством известных молекулярно-генетических маркеров. Для создания маркеров используются, например, молекулярные методы, позволившие создать тест-системы на уровне продуктов генов (белковый полиморфизм), а позднее на уровне генетического материала клетки (полиморфизм ДНК). Более перспективным представляется использование в качестве маркерных систем полиморфных последовательностей нуклеотидов в молекуле ДНК. Гомологичные последовательности ДНК у разных индивидов могут различаться по одному или нескольким основаниям в результате точечных мутаций, вставок, делений или инверсий. Такие последовательности ДНК называются полиморфными, а само явление гетерогенности или вариабельности нуклеотидного состава гомологичных последовательностей — полиморфизмом ДНК. Использование в качестве маркерных систем полиморфных последовательностей ДНК позволяет тестировать генетический полиморфизм непосредственно на уровне генотипа, а не на уровне продуктов генов, как в случае использования метода белкового полиморфизма. Картирование геномов играет существенную роль в разработке новых средств диагностики наследственных заболеваний и создания исходного материала для коррекции таких заболеваний (генотерапия).




Физическая и коллоидная химия. Основные термины и определения. Учебное пособие

Химический словарь – учебно-справочное издание, подготовленное специально для студентов аграрных вузов, а также специалистов, которым требуется информационная база в области физической, коллоидной химии. Данное издание соответствует программе по физической и коллоидной химии для студентов сельскохозяйственных вузов. Книга может представлять интерес для широкого круга читателей, интересующихся химией. Все термины и понятия размещены в алфавитном порядке, что делает удобным поиск и пользование книгой. В конце издания приведен алфавитный указатель, в приложении представлены основные справочные данные и таблицы.

179
Наука Белопухов С.Л., Старых С.Э. Физическая и коллоидная химия. Основные термины и определения. Учебное пособие

Наука Белопухов С.Л., Старых С.Э. Физическая и коллоидная химия. Основные термины и определения. Учебное пособие

Наука Белопухов С.Л., Старых С.Э. Физическая и коллоидная химия. Основные термины и определения. Учебное пособие

Химический словарь – учебно-справочное издание, подготовленное специально для студентов аграрных вузов, а также специалистов, которым требуется информационная база в области физической, коллоидной химии. Данное издание соответствует программе по физической и коллоидной химии для студентов сельскохозяйственных вузов. Книга может представлять интерес для широкого круга читателей, интересующихся химией. Все термины и понятия размещены в алфавитном порядке, что делает удобным поиск и пользование книгой. В конце издания приведен алфавитный указатель, в приложении представлены основные справочные данные и таблицы.

Внимание! Авторские права на книгу "Физическая и коллоидная химия. Основные термины и определения. Учебное пособие" (Белопухов С.Л., Старых С.Э.) охраняются законодательством!